
(word完整版)人教版高一数学必修一-第一章-知识点与习题讲解.doc
10页必修1第一章集合与函数基础知识点整理第1讲 §1.1.1 集合的含义与表示¤知识要点:1. 把一些元素组成的总体叫作集合(set),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为,既要关注代表元素x,也要把握其属性,适用于无限集.3. 通常用大写拉丁字母表示集合. 要记住一些常见数集的表示,如自然数集N,正整数集或,整数集Z,有理数集Q,实数集R.4. 元素与集合之间的关系是属于(belong to)与不属于(not belong to),分别用符号、表示,例如,.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程的所有实数根组成的集合;(2)大于2且小于7的整数.解:(1)用描述法表示为:; 用列举法表示为.(2)用描述法表示为:; 用列举法表示为.【例2】用适当的符号填空:已知,,则有: 17 A; -5 A; 17 B.解:由,解得,所以;由,解得,所以;由,解得,所以.【例3】试选择适当的方法表示下列集合:(教材P6 练习题2, P13 A组题4)(1)一次函数与的图象的交点组成的集合; (2)二次函数的函数值组成的集合;(3)反比例函数的自变量的值组成的集合.解:(1).(2).(3).点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为,也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.*【例4】已知集合,试用列举法表示集合A.解:化方程为:.应分以下三种情况:⑴方程有等根且不是:由 △=0,得,此时的解为,合. ⑵方程有一解为,而另一解不是:将代入得,此时另一解,合.⑶方程有一解为,而另一解不是:将代入得,此时另一解为,合.综上可知,.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.第2讲 §1.1.2 集合间的基本关系¤知识要点:1. 一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B中的元素,则说两个集合有包含关系,其中集合A是集合B的子集(subset),记作(或),读作“A含于B”(或“B包含A”).2. 如果集合A是集合B的子集(),且集合B是集合A的子集(),即集合A与集合B的元素是一样的,因此集合A与集合B相等,记作. 3. 如果集合,但存在元素,且,则称集合A是集合B的真子集(proper subset),记作AB(或BA).4. 不含任何元素的集合叫作空集(empty set),记作,并规定空集是任何集合的子集.5. 性质:;若,,则; 若,则;若,则.¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2) ; 0 {0}; {0}; N {0}.解:(1), ;(2)=, ∈, ,.B A. B. C. D.【例2】设集合,则下列图形能表示A与B关系的是( ).解:简单列举两个集合的一些元素,,,易知BA,故答案选A.另解:由,易知BA,故答案选A.【例3】若集合,且,求实数的值.解:由,因此,.(i)若时,得,此时,;(ii)若时,得. 若,满足,解得.故所求实数的值为或或.点评:在考察“”这一关系时,不要忘记“” ,因为时存在. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A={a,a+b,a+2b},B={a,ax,ax2}. 若A=B,求实数x的值.解:若a+ax2-2ax=0, 所以a(x-1)2=0,即a=0或x=1.当a=0时,集合B中的元素均为0,故舍去;当x=1时,集合B中的元素均相同,故舍去.若2ax2-ax-a=0.因为a≠0,所以2x2-x-1=0, 即(x-1)(2x+1)=0. 又x≠1,所以只有.经检验,此时A=B成立. 综上所述.点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第3讲 §1.1.3 集合的基本运算(一)¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次. 下面以表格的形式归纳三种基本运算如下.并集交集补集概念由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(union set)由属于集合A且属于集合B的元素所组成的集合,称为集合A与B的交集(intersection set)对于集合A,由全集U中不属于集合A的所有元素组成的集合,称为集合A相对于全集U的补集(complementary set)记号(读作“A并B”)(读作“A交B”)(读作“A的补集”)符号图形表示UA¤例题精讲:【例1】设集合.AB-1359x解:在数轴上表示出集合A、B,如右图所示:,,【例2】设,,求:(1); (2).解:.(1)又,∴;(2)又,得.∴ .【例3】已知集合,,且,求实数m的取值范围.-2 4 m xB A 4 m x解:由,可得.在数轴上表示集合A与集合B,如右图所示:由图形可知,.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集,,,求,,, ,并比较它们的关系. 解:由,则. 由,则 由,,则,.由计算结果可以知道,,.另解:作出Venn图,如右图所示,由图形可以直接观察出来结果.点评:可用Venn图研究与 ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.第4讲 §1.1.3 集合的基本运算(二)¤知识要点:1. 含两个集合的Venn图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:,.2. 集合元素个数公式:.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维.¤例题精讲:【例1】设集合,若,求实数的值.解:由于,且,则有:当解得,此时,不合题意,故舍去;当时,解得.不合题意,故舍去;,合题意.所以,.【例2】设集合,,求, .(教材P14 B组题2)解:.当时,,则,;当时,,则,;当时,,则,;当且且时,,则,.点评:集合A含有参数a,需要对参数a进行分情况讨论. 罗列参数a的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={|}, B ={|,},若AB=B,求实数的值.解:先化简集合A=. 由AB=B,则BA,可知集合B可为,或为{0},或{-4},或.(i)若B=,则,解得<;(ii)若B,代入得=0=1或=, 当=1时,B=A,符合题意;当=时,B={0}A,也符合题意.(iii)若-4B,代入得=7或=1, 当=1时,已经讨论,符合题意;当=7时,B={-12,-4},不符合题意.综上可得,=1或≤.点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A=B和B=的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题. 【例4】对集合A与B,若定义,当集合,集合时,有= . (由教材P12 补集定义“集合A相对于全集U的补集为”而拓展)解:根据题意可知,,由定义,则.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A中排除B的元素. 如果再给定全集U,则也相当于.第5讲 §1.2.1 函数的概念¤知识要点:1. 设A、B是非空的数集,如果按某个确定的对应关系,使对于集合A中的任意一个数,在集合B中都有唯一确定的数和它对应,那么就称:A→B为从集合A到集合B的一个函数(function),记作=,.其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合叫值域(range).2. 设a、b是两个实数,且a












