
2023学年湖南长沙长郡教育集团数学九上期末联考试题含解析.doc
26页2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,点A、B、C是⊙O上的三点,∠BAC= 40°,则∠OBC的度数是( )A.80° B.40° C.50° D.20°2.抛物线的顶点坐标是 A. B. C. D.3.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.对书中某一问题改编如下:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得( )个馒头A.25 B.72 C.75 D.904.下列图案中,是中心对称图形的是( )A. B. C. D.5.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.64万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是( )A.6(1+x)=8.64B.6(1+2x)=8.64C.6(1+x)2=8.64D.6+6(1+x)+6(1+x)2=8.646.我们知道,一元二次方程可以用配方法、因式分解法或求根公式进行求解.对于一元三次方程ax3+bx2+cx+d=0(a,b,c,d为常数,且a≠0)也可以通过因式分解、换元等方法,使三次方程“降次”为二次方程或一次程,进而求解.这儿的“降次”所体现的数学思想是( )A.转化思想 B.分类讨论思想C.数形结合思想 D.公理化思想7.下列四张扑克牌图案,属于中心对称图形的是( )A. B. C. D.8.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.9.如图,BA=BC,∠ABC=80°,将△BDC绕点B逆时针旋转至△BEA处,点E,A分别是点D,C旋转后的对应点,连接DE,则∠BED为( )A.50° B.55° C.60° D.65°10.如图,是的直径,点,在上,连接,,,如果,那么的度数是( )A. B. C. D.二、填空题(每小题3分,共24分)11.如果,那么的值为______.12.如图,在△ABC中,∠ACB=90°,AC=6,AB=1.现分别以点A、点B为圆心,以大于AB相同的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若将△BDE沿直线MN翻折得△B′DE,使△B′DE与△ABC落在同一平面内,连接B′E、B′C,则△B′CE的周长为_____.13.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为_____.14.若一个正六边形的周长为24,则该正六边形的面积为 ▲ .15.将边长分别为,,的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______.16.如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF=______.17.若关于x的一元二次方程有两个相等的实数根,则m的值为_________.18.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________.三、解答题(共66分)19.(10分)如图,在中,分别是的中点,,连接交于点.(1)求证:;(2)过点作于点,交于点,若,求的长.20.(6分)已知是二次函数,且函数图象有最高点.(1)求的值;(2)当为何值时,随的增大而减少.21.(6分)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是 事件,“小悦被抽中”是 事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为 ;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.22.(8分)如图,在中,,,.动点从点出发,沿线段向终点以/的速度运动,同时动点从点出发,沿折线以/的速度向终点运动,当有一点到达终点时,另一点也停止运动,以、为邻边作设▱与重叠部分图形的面积为点运动的时间为.(1)当点在边上时,求的长(用含的代数式表示);(2)当点落段上时,求的值;(3)求与之间的函数关系式,并写出自变量的取值范围.23.(8分)定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为 ;(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.24.(8分)天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B测得仰角为60°,已知AB=20米,点C和直线AB在同一铅垂平面上,求气球离地面的高度.(结果精确到0.1米)25.(10分)如图,抛物线交轴于两点,交轴于点,点的坐标为,直线经过点.(1)求抛物线的函数表达式;(2)点是直线上方抛物线上的一动点,求面积的最大值并求出此时点的坐标;(3)过点的直线交直线于点,连接当直线与直线的一个夹角等于的2倍时,请直接写出点的坐标.26.(10分) “互联网+”时代,网上购物备受消费者青睐,某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可售价100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降元,则每月可多销售5条.设每条裤子的售价为元(为正整数),每月的销售量为条.(1)直接写出与的函数关系式;(2)设该网店每月获得的利润为元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于3800元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?参考答案一、选择题(每小题3分,共30分)1、C【解析】∵∠BOC=2∠BAC,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.2、A【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【详解】∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.【点睛】本题考查了由抛物线的顶点式写出抛物线顶点的坐标,比较容易.3、C【分析】设有x个大和尚,则有(100-x)个小和尚,根据馒头数=3×大和尚人数+×小和尚人数结合共分100个馒头,即可得出关于x的一元一次方程,解之即可得出结论;【详解】解:设有x个大和尚,则有(100−x)个小和尚,依题意,得:3x+(100−x)=100,解得:x=25,∴3x=75;故选:C.【点睛】本题主要考查了一元一次方程的应用,掌握一元一次方程的应用是解题的关键.4、C【解析】根据中心对称图形的概念即可得出答案.【详解】A选项中,不是中心对称图形,故该选项错误;B选项中,是轴对称图形,不是中心对称图形,故该选项错误;C选项中,是中心对称图形,故该选项正确;D选项中,不是中心对称图形,故该选项错误.故选C【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.5、C【分析】设该快递公司这两个月投递总件数的月平均增长率为x,根据今年8月份与10月份完成投递的快递总件数,即可得出关于x的一元二次方程,此题得解.【详解】解:设该快递公司这两个月投递总件数的月平均增长率为x,根据题意得:6(1+x)2=8.1.故选:C.【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知增长率的问题.6、A【分析】解高次方程的一般思路是逐步降次,所体现的数学思想就是转化思想.【详解】由题意可知,解一元三次方程的过程是将三次转化为二次,二次转化为一次,从而解题,在解题技巧上是降次,在解题思想上是转化思想.故选:A.【点睛】本题考查高次方程;通过题意,能够从中提取出解高次方程的一般方法,同时结合解题过程分析出所运用的解题思想是解题的关键.7、B【解析】根据中心对称图形的概念和各扑克牌的花色排列特点的求解.解答:解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选B.8、B【解析】由题意根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意.故选:B.【点睛】本题主要考查轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、A【分析】首先根据旋转的性质,得出∠CBD=∠ABE,BD=BE;其次结合图形,由等量代换,得∠EBD=∠ABC;最后根据等腰三角形的性质,得出∠BED=∠BDE,利用三角形内角和定理求解即可.【详解】∵△BDC绕点B逆时针旋转至△BEA处,点E,A分别是点D,C旋转后的对应点,∴∠CBD=∠ABE,BD=BE,∵∠ABC=∠CBD+∠ABD,∠EBD=∠ABE +∠ABD,∠ABC=80°,∴∠EBD=∠ABC=80°,∵BD=BE,∴∠BED=∠BDE=(180°-∠EBD)=(180°-80°)=50°,故选:A.【点睛】本题主要考查了旋转的性质、等腰三角形的性质,以及三角形内角和定理.解题的关键是根据旋转的性质得出旋转前后的对应角、对应边分别相等,利用等腰三角形的性质得出“等边对等角”,再结合三角形内角和定理,即可得解.10、C【分析】因为AB是⊙O的直径,所以求得∠ADB=90°,进而求得∠B的度数,再求的度数.【详解】∵AB是⊙0的直径,∴∠ADB=90°.∵,∴∠B=65°,(同弧所对的圆周角相等). ∴∠BAD=90°-65°=25°故选:C【点睛】本题考查圆周角定理中。
