好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

轴对称知识点分类汇总大全.doc

17页
  • 卖家[上传人]:枫**
  • 文档编号:410176337
  • 上传时间:2022-11-03
  • 文档格式:DOC
  • 文档大小:430KB
  • / 17 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 轴对称与轴对称图形 一、知识点:1. 什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点2. 什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性联系:①两部分都完全重合,都有对称轴,都有对称点②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等lAB4.线段的垂直平分线:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线也称线段的中垂线) 5.轴对称的性质: ⑴成轴对称的两个图形全等⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

      6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点二、举例:例1:判断题: ① 角是轴对称图形,对称轴是角的平分线; ( )②等腰三角形至少有1条对称轴,至多有3条对称轴; ( )③关于某直线对称的两个三角形一定是全等三角形; ( )④两图形关于某直线对称,对称点一定在直线的两旁 ( )例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:方法1 方法2 方法3 例4:如图,已知:ΔABC和直线l,请作出ΔABC关于直线l的对称三角形lBAClBAClBACCADB例5:如图,DA、CB是平面镜前同一发光点S发出的经平面镜反射后的反射光线,请通过画图确定发光点S的位置,并将光路图补充完整。

      例6:如图,四边形ABCD是长方形弹子球台面,有黑白两球分别位于E、F两点位置上,试问怎样撞击黑球E,才能使黑球先碰撞台边AB反弹后再击中白球F?例7:如图,要在河边修建一个水泵站,向张庄A、李庄B送水修在河边什么地方,可使使用的水管最短?··ABa 例8:如图,OA、OB是两条相交的公路,点P是一个邮电所,现想在OA、OB上各设立一个投递点,要想使邮电员每次投递路程最近,问投递点应设立在何处?·PBOA 线段、角的轴对称性 lABM一、知识点:1.线段的轴对称性:① 线段是轴对称图形,对称轴有两条;一条是线段所在的直线,另一条是这条线段的垂直平分线②线段的垂直平分线上的点到线段两端的距离相等③到线段两端距离相等的点,在这条线段的垂直平分线上结论:线段的垂直平分线是到线段两端距离相等的点的集合2.角的轴对称性:①角是轴对称图形,对称轴是角平分线所在的直线②角平分线上的点到角的两边距离相等③到角的两边距离相等的点,在这个角的平分线上结论:角的平分线是到角的两边距离相等的点的集合二、举例:例1:已知ABC中,AB=AC=10,DE垂直平分AB,交AC于E,已知BEC的周长是16求ABC的周长.·CBOA·D例2:如图,已知∠AOB及点C、D,求作一点P,使PC=PD,并且使点P到OA、OB的距离相等。

      l··AB例3:如图,已知直线及其两侧两点A、B1) 在直线上求一点P,使PA=PB;(2)在直线上求一点Q,使平分∠AQB例4:如图,直线a、b、c表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可供选择的地址有几处?如何选? ODCBAE例5:已知:如图,在ΔABC中,O是∠B、∠C外角的平分线的交点,那么点O在∠A的平分线上吗?为什么? ODCBA1234例6:如图,已知:AD和BC相交于O,∠1=∠2,∠3=∠4试判断AD和BC的关系,并说明理由 例7:已知:如图,△ABC中,BC边中垂线ED交BC于E,交BA延长线于D,过C作CF⊥BD于F,交DE于G,DF=BC,试说明∠FCB=∠B例8:已知:在∠ABC中,D是∠ABC平分线上一点,E、F分别在AB、AC上,且DE=DF试判断∠BED与∠BFD的关系,并说明理由.2、已知:在ΔABC中,D是BC上一点,DE⊥BA于E,DF⊥AC于F,且DE=DF.试判断线段AD与EF有何关系?并说明理由3、如图,已知:在△ABC中,∠BAC=90°,BD平分∠ABC,DE⊥BC于E试说明BD垂直平分AE等腰三角形的轴对称性 一、知识点:3. 等腰三角形的性质:①等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴;②等腰三角形的两个底角相等;(简称“等边对等角”)③等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

      简称“三线合一”)4. 等腰三角形的判定:①如果一个三角形有2个角相等,那么这2个角所对的边也相等;(简称“等角对等边”)②直角三角形斜边上的中线等于斜边上的一半3.等边三角形:① 等边三角形的定义:三边相等的三角形叫做等边三角形或正三角形② 等边三角形的性质:等边三角形是轴对称图形,并且有3条对称轴;等边三角形的每个角都等于600③等边三角形的判定:3个角相等的三角形是等边三角形;有两个角等于600的三角形是等边三角形;有一个角等于600的等腰三角形是等边三角形4.三角形的分类: 斜三角形:三边都不相等的三角形 三角形 只有两边相等的三角形 等腰三角形 等边三角形二、举例:例1、如图,已知D、E两点段BC上,AB=AC,AD=AE,试说明BD=CE的理由? ABCED例2:如图,已知:△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且相交于O点①试说明△OBC是等腰三角形;②连接OA,试判断直线OA与线段BC的关系?并说明理由。

      AEDBCOODCBA1234例3:如图,已知:AD和BC相交于O,∠1=∠2,∠3=∠4试判断AD和BC的关系,并说明理由 EDCBA例4:如图,已知:△ABC中,∠C=900,D、E是AB边上的两点,且AD=AC,BD=BC求∠DCE的度数 GFEDCBA··例5:如图,已知:△ABC中,BD、CE分别是AC、AB边上的高,G、F分别是BC、DE的中点试探索FG与DE的关系 AFEDBCM例6:如图,已知:△ABC中,∠C=900,AC=BC,M是AB的中点,DE⊥BC于E,DF⊥AC于F试判断△MEF的形状?并说明理由 EDCBA例7:如图,已知:△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD,连结EC、ED,试说明CE=DE AFCEBDMP例8:如图,在等边△ABC中,P为△ABC内任意一点,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,AM⊥BC于M,试猜想AM、PD、PE、PF之间的关系,并证明你的猜想.等腰梯形的轴对称性 一、知识点:5. 等腰梯形的定义:①梯形的定义:一组对边平行,另一组对边不平行为梯形梯形中,平行的一组对边称为底,不平行的一组对边称为腰。

      ADCB②等腰梯形的定义:两腰相等的梯形叫做等腰梯形6. 等腰梯形的性质:①等腰梯形是轴对称图形,是两底中点的连线所在的直线②等腰梯形同一底上两底角相等③等腰梯形的对角线相等3.等腰梯形的判定:③ 在同一底上的2个底角相等的梯形是等腰梯形④ 补充:对角线相等的梯形是等腰梯形二、举例:例1:填空:1、等腰梯形的腰长为12cm,上底长为15cm,上底与腰的夹角为120°,则下底长为 cm.2、如果一个等腰梯形的二个内角的和为 1000 ,那么此梯形的四个内角的度数分别为 .3、等腰梯形上底的长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是______;4、已知等腰梯形的一个底角等于600,它的两底分别为13cm和37cm,它的周长为_______;ADCB5、如图,在梯形ABCD中,AD∥BC,AB=CD,∠A=120°,对角线BD平分∠ABC,则∠BDC的度数是 ;又若AD=5,则BC= .6、如图,在等腰梯形ABCD中,AD∥BC,AB = AD,BD = BC, 则∠C= 0例2:如图,等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O.试说明:AO=DO.例3:如图,梯形ABCD中,AD∥BC,AC=BD。

      试说明:梯形ABCD是等腰梯形ADBCE例4:如图,在等腰梯形ABCD中,AD∥BC,AD=3cm,BC=7cm,E为CD的中点,四边形ABED的周长比△BCE的周长大2 cm,试求AB的长.例5:如图,在等腰梯形ABCD中,AD∥BC,AB=CD,M为BC中点,则:(1)点M到两腰AB、CD的距离相等吗?请说出你的理由2)若连结AM、DM,那么△AMD是等腰三角形吗?为什么?(3)又若N为AD的中点,那么MN⊥AD一定成立.你能说明为什么吗?ADBCEFMADEFCB例6、如图,在等。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.