
《塑性变形》PPT课件 (2).ppt
125页第三章 塑性变形商洛学院 常亮亮3.1 3.1 3.1 3.1 金属材料塑性变形机制与特点金属材料塑性变形机制与特点金属材料塑性变形机制与特点金属材料塑性变形机制与特点塑塑性性变变形形是永久性变形常温或低温下,单晶体的塑性变形主要塑性变形主要有有滑移滑移、、孪生孪生,还有,还有扭折扭折u滑滑移移是晶体在切应力作用下沿一定的晶面和晶向进行切变的过程,如面心立方结构的(111)面[101]方向等滑移系统越多,材料的塑性越大(1) 滑移的显微观察 由大量位错移动而导致晶体的一部分相对于另一部分,沿着一定晶面和晶向作相对的移动,即晶体塑性变形的滑移机制右下图铜中的滑移带(×500)(2)滑移线和滑移带滑移带(slip band)是由一系列相互平行更细的线组成的这些线为滑移线(slip line)滑移线实际上是在晶体表面产生的小台阶下图滑移线和滑移带示意图((((3 3 3 3)滑移系)滑移系)滑移系)滑移系 滑移是沿着特定的晶面(称为滑移面 slip plane)和晶向(称为滑移方向 slip direction)上运动一个滑移面和其上的一个滑移方向组成一个滑移系(slip system)。
滑移系表示晶体在进行滑移时可能采取的空间取向滑移系的个数=(滑移面个数)×(每个面上所具有的滑移方向的个数) 结结论论:①滑移与滑移面密排程度和滑移方向个数有关;滑移面和滑移方向往往是金属晶体中原子排列的最密排面和最密排晶向 ②滑移系主要与晶体结构有关每一种晶格类型的金属都有特定的滑移系,且滑移系数量不同晶体结构不同,滑移系不同;一般晶体中滑移系越多,滑移越容易进行,塑性越好 与同时开动滑移系数目有关(k)((4 4)滑移的临界分切应力()滑移的临界分切应力(ττk k)) 能使晶体滑移的力是外力在滑移系上的分切应力通常把给定滑移系上开始产生滑移所需分切应力称为滑移 的 临 界 分 切 应 力 ( critical resolved shear stress) 三种常见金属晶体结构的滑移系三种常见金属晶体结构的滑移系三种常见金属晶体结构的滑移系三种常见金属晶体结构的滑移系((5 5)滑移时晶体的转动)滑移时晶体的转动 随着滑移的进行,晶体的取向发生改变的现象称为晶体的转动对于密排六方结构结构,这种现象尤为明显拉伸时,滑移面和滑移方向逐渐趋于平行于拉伸轴线方向。
压缩时,滑移面逐渐趋于与压力轴线方向垂直 滑移时不仅滑移面发生转动,而滑移方向也逐渐改变,滑移面上的分切应力也随之改变φ=45º时分切应力最大 经滑移转动后,若φ角趋近于45º,则分切应力逐渐增大,滑移越来越容易,称为几何软化(geometrical softening);若φ角远离45º,则滑移越来越困难,称为几何硬化(geometrical hardening) ((6)多系滑移)多系滑移 等效滑移系:各滑移系的滑移面和滑移方向与力轴夹角分别相等的一组滑移系单滑移:只有一个特定的滑移系处于最有利的位置而优先开动时,形成单滑移 多滑移:由于变形时晶体转动的结果,有两组或几组滑移面同时转到有利位向交交滑滑移(cross-slip):指两个或多个滑移面共同沿着一个滑移方向的滑移交滑移的实质是螺位错在不改变滑移方向的情况下,从一个滑移滑到交线处,转到另一个滑移面的过程 滑移的表面痕迹 单单滑滑移移:单一方向的滑移带; 多多滑滑移移:相互交叉的滑移带; 交交滑滑移移:波纹状的滑移带u孪生是发生在金属晶体内局部区域的一个切变过程,切变区域宽度较小,切变后形成的变形区的晶体取向与未变形区成镜面对称关系,点阵类型相同。
(1) 孪生变形:是在切应力作用下,晶体的一部分沿一定晶面(孪晶面:twining plane)和一定方向(孪生方向;twining direction)相对于另一部分作均匀的切变(协同位移)所产生的变形但是不同的层原子移动的距离也不同变形与未变形的两部分晶构成镜面对称,合称为孪晶(twin)均匀切变区与未切变区的分界面称为孪晶界FCCFCCFCCFCC晶体孪生变形晶体孪生变形晶体孪生变形晶体孪生变形FCC晶体的孪生面是(111),孪生方向是[112 ]图2是FCC晶体孪生示意图fcc中孪生时每层晶面的位移是借助于一个不全位错(b=a/6[112])的移动造成的,各层晶面的位移量与其距孪晶面的距离成正比孪晶在显微镜下观察呈带状或透镜状每层(111)面的原子都相对于邻层(111)晶面在[112 ]方向移动了此晶向原子间距的一个分数值右图2中带浅咖啡色的部分为原子移动后形成的孪晶可以看出,孪晶与未变形的基体间以孪晶面为对称面成镜面对称关系如把孪晶以孪晶面上的[112 ]为轴旋转180度,孪晶将与基体重合其他晶体结构也存在孪生关系,但各有其孪晶面和孪晶方向 铜中的变形孪晶铜中的变形孪晶锌中的变形孪晶( ( ( (2) 2) 2) 2) 孪生的特点孪生的特点孪生的特点孪生的特点 ① 孪生变形是在切应力作用下发生的,并通常出现于滑移受阻的应力集中区。
因此孪生的τk比滑移大得多hcp中常以孪生方式变形,bcc中在冲击或低温也可能借助于孪生变形,fcc中一般不发生孪生变形 ② 孪生是一部分晶体沿孪晶面相对于另一部分晶体作均匀切变而滑移是不均匀的 ③ 孪生的两部分晶体的位向不同,形成镜面对称的位向关系而滑移后晶体各部分的位向并未改变 ④孪生对塑性变形的贡献比滑移小得多但孪生能改变晶体取向,使滑移转到有利位置 ⑤ 由于孪生变形后,局部切变可达较大数量,所以在变形试样的抛光面上可以看到浮凸,经重新抛光后,表面浮凸可以去掉,但因已变形区和未变形区的晶体位向不同,所以在偏光下或侵蚀后有明显的衬度,仍能看到孪晶而滑移变形后的试样经抛光后滑移带消失 形变孪晶常见于密排六方和体心立方晶体(密排六方金属很容易产生孪生变形),面心立方晶体中很难发生孪生 (3)(3)(3)(3)孪晶的类型及形成孪晶的类型及形成孪晶的类型及形成孪晶的类型及形成 按 孪 晶 ( twin) 形 成 原 因 可 将 孪 晶 分 为 : 变 形 孪 晶(deformation twinning)、生长孪晶、退火孪晶 ① ① 变形孪晶变形孪晶( (机械孪晶机械孪晶) ):机械变形产生的孪晶。
特征:透镜状或片状其形成通过形核和长大两个阶段生产形核是在晶体变形时以极快速度爆发出薄片孪晶;生长是通过孪晶界的扩展使孪晶增宽孪生变形在σ—ε曲线上表现为锯齿状变化,如下图孪生变形与晶体结构类型有关hcp中易发生,fcc一般不易发生,但在极低温度下才会产生② ② 生生长长孪孪晶晶:晶体自气态,液态,或固体中长大时形成的孪晶③ ③ 退退火火孪孪晶晶:形变金属在其再结晶过程中形成的孪晶孪生对塑变的直接贡献比滑移小得多;孪生改变晶体的位向,使硬位向的滑移系转到软位向,激发晶体的进一步滑移,对滑移系少的密排六方金属尤其重要 孪生和滑移的区别孪生和滑移的区别孪生和滑移的区别孪生和滑移的区别3.1.23.1.2多晶体材料的塑性变形多晶体材料的塑性变形 1. 1. 晶粒取向的影响晶粒取向的影响u 晶晶界界具具有有阻阻滞滞效效应应:90%以上的晶界是大角度晶界,其结构复杂,由约几个纳米厚的原子排列紊乱的区域与原子排列较整齐的区域交替相间而成,这种晶界本身使滑移受阻而不易直接传到相邻晶粒,晶界附近变形较晶粒内部小 原原因因(1)晶界的特点:原子排列不规则,分布有大量缺陷。
(2)晶界对变形的影响:滑移、孪生多终止于晶界,极少穿过 uu晶晶界界具具有有取取向向差差效效应应:多晶体中,不同位向晶粒的滑移系取向不相同,滑移不能从一个晶粒直接延续到另一晶粒中uu在在变变形形过过程程中中各各晶晶粒粒具具有有相相互互制制约约和和协协调调性性在多晶体中,外力作用下处于有利位向的晶粒首先滑动 → 位错开动,增殖 → 晶界上位错塞积 → 应力集中(τ>τk)→相邻晶粒位错源开动→相邻晶粒变形→塑变,各晶粒间变形而得到相互协调与配合 原因:(1)各晶粒之间变形具有非同时性2)要求各晶粒之间变形相互协调否则独立变形会导致晶体分裂3)理论分析指出,多晶体塑性变形时要求每个晶粒至少能在5个独立的滑移系进行滑移,保证晶粒形状的自由变化能否满足该要求与晶体的结构类型有关 2 2. . 晶界对性能的影响晶界对性能的影响 晶界对晶粒变形具有阻碍作用 拉伸试样变形后在晶界处呈竹节状,每个晶粒中的滑移带均终止于晶界 附 近 , 晶 界 附 近 位 错 塞 积 , 塞 积 数 目 n为 : n=kлτn=kлτ0 0l/Gbl/Gb 位错塞积,密度增高,材料强度提高。
因此,晶粒越细,晶界越多,材料强度(包括σs,σb, σ-1)越高 , 塑 性 较 好 , 称 为 细细 晶晶 强强 化化 ( grain size strenthing),其σs与d关系如下: σσs s = = σσ0 0++kdkd-1/2-1/2 HallHall--PetchPetch公式公式晶粒直径(μm) 400501052下屈服点(KN/m2) 8612118024234510钢σs与晶粒大小的关系锌的单晶和多晶的拉伸曲线比较锌的单晶和多晶的拉伸曲线比较由上图锌的拉伸曲线可以看出: 比较:同一材料多晶体的强度高,但塑性较低单晶塑性高 原因:多晶中各个晶粒的取向不同在外力作用下,某些晶粒的滑移面处于有利的位向,受到大于σk的切应力,位错开始滑移当相邻晶粒处于不利位向,不能开动滑移系时,则变形晶粒中的位错不能越过晶粒晶界,而是塞积在晶界附,这个晶粒的变形便受到约束,整个多晶的变形困难得多 结果:只有加大外力,才能使那些滑移面位向不利的晶粒逐渐加入滑移,结果多晶试样强度上升,塑性下降uu晶粒越细,强度和塑韧性越高的原因:晶粒越细,强度和塑韧性越高的原因:((1 1)) 晶粒越细,强度越高晶粒越细,强度越高 (细晶强化:霍尔-配奇公式s=0+kd-1/2 )。
原因:晶粒越细,晶界越多,位错运动的阻力越大 (有尺寸限制)((2 2))晶粒越细,塑韧性提高晶粒越细,塑韧性提高 原因:晶粒越多,变形均匀性提高由应力集中导致的开裂机会减少,可承受更大的变形量,表现出高塑性 细晶粒材料中,应力集中小,裂纹不易萌生;晶界多,裂纹不易传播,在断裂过程中可吸收较多能量,表现高韧性晶界对硬度的影响低碳钢的σb与晶粒直径的关系3、多晶体塑性变形的特点1)各晶粒变形的非同时性和非均匀性Ø材料表面优先Ø与切应力取向最佳的滑移系优先2)各晶粒塑性变形的相互制约与协调晶粒间塑性变形的相互制约晶粒间塑性变形的相互协调晶粒内不同滑移系滑移的相互协调保证材料整体的统一① 塑性变形是不可逆变形,变形度大,一般金属的塑性远大于弹性② 金属的塑性变形主要由切应力引起,只有切应力才能使晶体产生滑移或孪生变形③ 金属塑性变形阶段除了塑性变形本身外还伴随有弹性变形和形变强化,其应力—应变关系不再是简单的直线关系3.1.3塑性变形的特点④ 高温下,金属塑性变形除了决定于应力外,还和温度及时间有关,即高温时间效应 ⑤ 表征金属塑性变形的力学性能指标都是很敏感的性能指标。
⑥ 金属塑性变形时还会引起应变硬化、内应力及一些物理性能的变化3.1.43.1.43.1.43.1.4 塑性变形对材料组织和性能的影响塑性变形对材料组织和性能的影响塑性变形对材料组织和性能的影响塑性变形对材料组织和性能的影响 塑性变形对材料组织和性能的影响 主要表现在以下方面:显微组织变化:晶粒形状的变化 、亚结构的变化、形变织构 性能的变化:加工硬化、力学性能、物理性能、化学性能 2024/8/3117位错行为绕过和切过位错行为绕过和切过(一)显微组织变化(一)显微组织变化(一)显微组织变化(一)显微组织变化 经塑性变形后材料的显微组织(microstructure)变化是: 1.晶粒形状的变化 (1)出现大量的滑移带和孪晶带 (2)晶粒形状发生了变化随变形度增大,等轴状晶粒→扁平晶粒→纤维组织纤维组织(fiber microstructure)分布方向是材料流变伸展方向 (3)当金属中组织不均匀,如有枝晶偏析或夹杂物时,塑性变形使这些区域伸长,这在后序的热加工或热处理过程中会出现带状组织(band microstructure)。
低碳钢塑性变形后纤维组织a)30%压缩 b) 50%压缩 2. 亚结构(sub—grain)的变化 (1)随变形度增大,位错密度迅速增大 (2) 位错组态和分布等亚结构发生变化:变形度增大,位错密度增大 → 位错呈纷乱不均匀分布 → 位错缠结 → 位错胞(称为胞状亚结构) → 细长状变行胞胞状亚结构的形成不仅与变形度有关,而且还取决于材料类型层错能高易出现胞状结构;层错能低,易形成较为均匀而复杂的位错网右图为低碳钢形变(胞状)亚结构 3. 形变织构 (1)形变织构(deformation texture):是晶粒在空间上的择优取向(preferred orientation),如右上图 (2)类型及特征 ①丝织构 ② 板织构 右图是因形变织构造成的制耳 ((二二))加工硬化:金属材料在塑性变形过程中,随着变形量的增加,强度和硬度不断上升,而塑性和韧性不断下降的现象 实际各晶体的加工硬化曲线因其晶代表结构类型、取向、杂质含量及温度等因素的不同而有所变化其情况如下: (1) fcc和bcc显示出典型的三个阶段硬化; (2) hcp初始阶段与fcc相近,但hcp第一阶段远远超过了fcc和bcc; (3) 当bcc含有杂质原子,因杂质原子与位错交互作用,将产生屈服现象并使曲线发生变化。
从以上分析可知,塑性变形过程中位错密度的增加及其所产生的钉扎作用是导致加工硬化的决定性因素 (三) 残余应力 1. 储存能(stored energy): 储存能的表现形式:宏观残余应力、微观残余应力、点阵畸变 2. 残余应力(retained stress)及其分类: (1) 第一类内应力(first internal stress)—宏观残余应力:由于金属材料各部分宏观变形量不均匀而造成的,对应的畸变能不大,仅占总储存能的0.1%左右这类内应力的平衡范围是整个晶体 (2) 第二类内应力—微观残余应力:由晶粒或亚晶粒间变形不均匀而造成的内应力,其作用范围与晶粒尺寸相当(同一数量级),即在晶粒或亚晶粒之间保持平衡,这种内应力可达到很大的数值 (3) 第三类内应力—点阵畸变 :由于工件在塑性变形中形成的大量点阵缺陷(如空位、间隙原子、位错等),造成点阵畸变而引起的内应力其范围是几个到几十个原子间距的尺度(几十至几百纳米)变形金属中储存能的绝大部分用于形成点阵畸变 总的贮能中,耗散热能占90%,而三种内应力代表的弹性储存能占10%,其中:第一类应力(宏观内应力)约占0.1%,第二类内应力(微观内应力)约占0.9%,第三类内应力(点阵畸变)占约9%。
受力试样中,应力达到某一特定值后,应力虽不增加(或在微小范围内波动),而变形却急速增长的现象称为屈服 它标志着材料的力学响应由弹性变形阶段进入塑性变形阶段,称为物理屈服现象3.2屈服现象及其本质3.2.1物理屈服现象光滑试样拉伸试验时屈服变形开始于试样微观不均匀处,或存在应力集中的部位,一般在距试样夹持部分较近的地方局部屈服开始后,逐渐传播到整个试样试样表面出现与拉伸轴线成45°方向的滑移带,并逐渐传播到整个试样表面滑移带遍布全部试样表面时,应力-应变曲线到达C点屈服应变量BC是靠屈服变形提供的上屈服点:试样开始屈服时对应的应力下屈服点:载荷首次降低的最低载荷或不变载荷 屈服过程:试样继续伸长,应力保持为定值或有微小的波动,在拉伸曲线上出现一个应力平台区,试样在此恒定应力下的伸长 吕德斯带:在发生屈服延伸阶段,试样的应变是不均匀的,在试样表面可观察到与纵轴约呈45º交角的应变痕迹,称为吕德斯(Lüders)带吕德斯带会造成拉伸和深冲过程中工件表面不平整 3.2.23.2.2屈服现象的本质屈服现象的本质( 1) 与 金 属 中 微 量 的 溶 质 原 子 有 关 , 即 柯 氏(Cottrell)气团理论 溶质原子与位错的应力场发生弹性交互作用,形成柯氏气团(Cottrell)钉扎位错运动,必须在更大的应力作用下才能产生新的位错或使位错脱钉,表现为上屈服点;一旦脱钉,使位错继续运动的应力就不需开始时那么大,故应力值下降到下屈服点,试样继续伸长,应力保持为定值或有微少的波动。
(2)位错运动与增殖理论:材料塑性变形时应变速度ε’与晶体中可动位错的密度ρ、位错运动的平均速度V及位错的柏氏矢量b成正比 应变速率 ε’= bρv, 位错运动速度v=(τ/τ0)m滑移面上切应力 、位错产生单位滑移速度所需应力0 、应力敏感系数m要出现明显的屈服:可动位错密度可动位错密度 小、小、应力敏应力敏感系数感系数m m小小开始变形时,ρ低,欲使应变速率固定,需要较大的v值,故需要较高的应力τ ,表现为上屈服点;一旦塑性变形开始后,位错迅速增殖, ρ增加,必然导致v的突然下降(为保持应变速率固定),所以所需的应力τ 突然下降,产生了屈服现象 是否产生屈服点现象还与材料的m值有关,m小的材料,如Ge,Si,Fe等出现显著的上下屈服点应变时效:将低碳钢试样拉伸到产生少量预塑性变形后卸载,然后重新加载,试样不发生屈服现象,但若产生一定量的塑性变形后卸载,在室温停留几天或在低温(如150℃)时效几小时后再进行拉伸,此时屈服点现象重新出现,并且上屈服点升高,这种现象应变时效原因:室温长期停留或低温时效期间,溶质原子C、N又聚集到位错线周围重新形成气团所致。
3.2.3应变时效解决由于吕德斯带造成的工件表面不平整的措施:A.加入少量能夺取固溶体合金中的溶质原子,使之形成稳定化合物的元素B.板材在深冲之前进行比屈服伸长范围稍大的预变形(约0.5%~2%变形度),使位错挣脱气团的钉扎,然后尽快进行深冲3.33.3真实应力真实应力- -应变曲线及形变强化规律应变曲线及形变强化规律 拉伸试验中,试样完成屈服应变后,便进入形变强化阶段拉伸过程中的真实应力S按每一瞬时试样的真实截面积A计算 S=P/A 式中P为截面面积为A时的载荷 真实应变ε=ln(l/lo)低碳钢工程应力-应变曲线与真应力-真应变曲线3.3.1冷变形金属的真应力-应变关系从屈服点到颈缩之间的形变强化规律,可以用Hollomon公式描述:S=KS=K ε εn n ε为真实塑性应变,K为强度系数,n为应变强化指数,表示材料的应变强化能力或对进一步塑性变形的抗力当n=0时,为理想塑性材料的典型情况当n=1时,应力与应变成线性关系,为理想弹性材料的典型情况n与应变硬化速率dS/d ε的关系式:: dS/d dS/d ε ε=nS/=nS/ ε ε3.3.2缩颈条件分析缩缩颈颈是韧性金属材料在拉伸试验时变形集中于局部区域的特殊现象,是应变硬化与截面减小共同作用的结果。
在金属试样拉伸力-伸长曲线极大值B点(拉伸失稳点)之前,dP>0;B点后,dP<0颈缩判据的图示颈缩判据的图示当真实应力—应变曲线上某点的斜率等于该点的真实应力时,缩颈产生 缩颈判据:缩颈判据:拉伸失稳或缩颈时: dP = 0∵ P = SA故 dP= AdS + SdA = 0 在塑性变形过程中,dS恒大于0,AdS为正值,表示材料应变硬化使试样承载能力增加;dA恒小于0,SdA为负值,表示截面收缩使承载能力下降由均匀塑性变形阶段体积不变的条件:即 dV = 0 ∵V = AL ∴AdL + LdA = 0 故: 或在拉伸失稳点处Hollomon关系成立:故当金属材料的应变硬化指数等于最大真实均匀塑性应变量时,缩颈便会产生 形变强化定义:在金属整个变形过程中,当外力超过屈服强度之后,要使塑性变形继续下去,需要不断增加外力才能继续进行,在真应力应变曲线上表现为流变应力不断上升3.3.33.3.3形变强化形变强化金属有一种阻止继续塑性变形的抗力,这种抗力就是应变硬化性能Hollomon方程: S = K n 描述产生塑性变形后的真应力-应变曲线ε为真实塑性应变,K为强度系数,n n为应变强化指数为应变强化指数。
n=0,理想塑性材料n=1,理想弹性材料n=0.05~0.5,大多数金属材料n值通常由实验测定n值与屈服强度近似成反比:n×s≈常数如低碳钢和低合金高强度钢:n≈70/n≈70/ s s应变强化指数n的大小,表示材料的应变强化能力或对进一步塑性变形的抗力,是一个很有意义的性能指标n 值越大,应力-应变曲线越陡 b = n形变强化容量(均匀变形量): b b代表材料均匀变形能力的大小和形变强化的可能性大小缩颈判据:缩颈判据:在缩颈开始时的真应变在数值上与应变强化指数n相等 利用这一关系,可以大致估计材料的均匀变形能力形变强化技术意义形变强化技术意义Ø形变强化可使金属零件具有抵抗偶然过载的能力, 保证安全Ø形变强化与塑性变形相配合,能保证材料在截面上的均匀变形,可以保证某些冷成形工艺,如冷拔线 材和深冲成形等顺利进行Ø形变强化是工程上强化材料的重要手段 18-918-9型型不不锈锈钢钢,,变变形形前前σσ0.20.2=196MPa=196MPa,,经经40%40%冷冷轧轧后后,,σσ0.20.2=780=780~~980MPa980MPa,屈服强度提高,屈服强度提高4 4~~5 5倍。
倍 北宋科学家沈括在《梦溪笔谈·器用》中讲述用冷锻制造铠甲时指出:“凡锻甲之法,其始甚厚,不用火,冷锻之,比元厚三分减二,乃成其末留头许不锻,隐然如瘊子,欲以验未锻时厚薄,如浚河留土笋也,谓之“瘊子甲” 文中所说的“三分减二”的冷加工变形量,与现代金属冷加工常用变形量60~70%相比,极为近似 利用的就是形变强化的规律形变强化技术意义形变强化技术意义形变强化过程中的损伤形变强化过程中的损伤金属材料的形变强化现象是与塑性变形过程相伴存在并不断发展的,属于提高材料强度的因素形变强化过程中造成的损伤:塑性韧性降低,脆性增加,或者承载能力降低甚至诱发早期断裂微孔损伤:材料形变强化过程中产生的最早的不连续因素3.3.4韧性的概念及静力韧度分析 韧性是指材料在断裂前吸收塑性变形功和断裂功的能力,而韧度则是度量材料韧性的力学性能指标对拉伸断裂来说,韧度可以理解为应力-应变曲线下的面积A:高强度、低塑性、低韧性B:低强度、高塑性、低韧性C:中强度、中塑性、高韧性第二章 3.4 3.4 应力状态对塑性变形的影响应力状态对塑性变形的影响3.4.1应力状态柔度系数 同一种金属材料,在一定承载条件下产生何种失效形式,除与自身强度大小有关外,还与承载条件下的应力状态有关。
不同的应力状态,其最大正应力σmax与最大切应力τmax的相对大小是不一样的因此,对金属变形和断裂性质将产生不同影响为此,我们必须知道不同静加载方式下试样中τmax 和σmax的计算方法及其相对大小的表示方法受力体一点的应力状态受力体一点的应力状态由材料力学可知,任何复杂应力状态均可用三个主力σ1、σ2和σ3(σ1>σ2>σ3)来表示按材料力学强度理论:按材料力学强度理论:切应力弹塑性变形弹性变形正应力塑性断裂脆性断裂最大切应力理论:最大正应变理论:根据这三个主应力,计算最大切应力和最大正应变:应力状态柔度系数:对于金属材料:ν取0.25,则 单向拉伸时的应力状态只有σ1,σ2=σ3=0,因此α=0.5α↑→τmax↑→应力状态越软,金属越易产生塑性变形和韧性断裂 应力状态柔度系数应力状态柔度系数 单向静拉伸的应力状态较硬,一般适用于塑性变形抗力与切断强度较低的所谓塑性材料试验 对于塑性较好的金属材料,则常采用三向不等拉伸的加载方法,使之在更“硬”的应力状态下显示其脆性倾向第二章 3.4.2 材料在扭转加载条件下的力学性能金属扭转试验按GB10128-88《金属扭转试验方法》进行。
主要采用直径d0=10mm、标距长度L0为50mm或100mm的圆柱形试样1、扭转试验的特点1)扭转的应力状态软性系数α=0.8,比拉伸大,易显示金属 的塑性行为2)圆形试样扭转时,整个长度上塑性变形是均匀的,没有缩颈现象所以能反映高塑性材料直至断裂前的变形能力和强度3)能较敏感地反映出金属表面缺陷及表面硬化层的性能4)扭转试验是测定大部分材料切断强度最可靠的方法试样:圆柱或圆管扭转曲线扭转曲线扭转试样中的应力与应变分析扭转应力状态特点扭转应力状态特点:第二章 试样在弹性范围内表面切应力τ和切应变γ为:1、切变模量G 弹性范围内,切应力τ与切应变γ之比测出扭矩增量ΔT和相应扭角增量Δφ,求出切应力与切应变,即得扭转实验测定的力学性能指标:2、扭转屈服点τs在扭转曲线或试验机扭矩读盘上读出屈服时的扭矩Ts即可得扭转屈服点 τ0.3 3、规定非比例扭转应力τp 试样标距部分表面的非比例切应变γP达到规定数值时,按弹性扭转公式计算的切应力,称为规定非比例扭转应力τp 4、抗扭强度τb试样在扭断前承受的最大扭矩Tb,利用弹性扭转公式计算的切应力为抗扭强度。
扭转试验特点及应用(1)应力状态较软,适于拉伸脆性或低塑性材料;(2)轴向宏观塑性变形始终是均匀的;(3)对材料表面缺陷敏感;(4)断口特征最明显,可准确测定切断强度5)高温扭转试验可用来研究金属在热加工条件下的流变性能与断裂性能,确定工艺参数;(6)可利用扭转试验研究或检验工件热处理的表面质量和表面强化工艺的效果; (7)根据扭转试验的宏观断口特征,可明确鉴别金属材料的最终断裂是正断还是切断切断:断口平整且与试样轴线垂直,有回旋状塑性变形痕迹;正断:断面与试样轴线成45°角且呈螺旋状第二章 3.4.33.4.3弯曲试验弯曲试验4.4.弯曲性能试验弯曲性能试验弯曲试验方法:GB/T 10128-1988GB/T 10128-1988第二章 弯曲试验弯曲试验 考察材料在复杂应力状态下塑性变形能力弯曲工艺试验:NiNi合金合金( (板厚板厚45mm)45mm)焊缝弯曲无裂纹为合格焊缝弯曲无裂纹为合格 例:焊接件弯曲工艺试验第二章 弯曲试验原理弯曲试验原理 试样在弹性范围内弯曲时,受拉侧表面的最大弯曲应力: M-最大弯矩: ( 三点弯曲 M=FLS/4 四点弯曲M=Fl/2 )W-试样的抗弯截面系数: 圆形试样 矩形试样 第二章 弯曲试验力学性能指标弯曲试验力学性能指标 金属抗弯试验方法按GB/T232-1999《金属材料弯曲试验方法》进行。
1)规定非比例弯曲应力σpb试样弯曲时,外侧表面上的非比例弯曲应变εpb达到规定值时,按弹性弯曲应力公式计算的最大弯曲应力 例如:σpb0.01或σpb0.2 三点弯曲: 四点弯曲: n-挠度放大系数 Y -圆形试样的半径或矩形试样的半高 2)抗弯强度σbb 根据试样弯曲至断裂前达到的最大弯曲力,按弹性弯曲应力公式计算的最大弯曲应力,称为抗弯强度3)其它力学性能指标弯曲弹性模量、断裂挠度f bb、断裂能量U第二章 弯曲力-挠度 曲线第二章 弯曲试验特点与应用弯曲试验特点与应用1 1、弯曲试验的特点、弯曲试验的特点1) 弯曲试验的试样形状简单,操作方便2) 弯曲试验时不存在试样偏斜对试验结果的影响,可用试样弯曲的挠度显示材料的塑性3) 弯曲试验时,试样的表面应力最大,可较灵敏地反映材料的表面缺陷④b3>b4>b 2 2、弯曲试验的应用、弯曲试验的应用1) 常用于测定铸铁、铸造合金、工具钢及硬质合金等脆性与低塑性材料的强度和显示塑性的差别2) 常用来比较和鉴定渗碳层和表面淬火层等化学热处理及表面热处理机件的质量和性能。
3.3.43.3.4压缩性能试验压缩性能试验(1)压缩试验方法:压缩试验用的试样其横截面为圆形或正方形,试样长度L一般为直径或边长的2.5-3.5倍 金属的单向压缩试验按GB/T7314-2005《金属材料室温压缩试验方法》进行典型材料压缩曲线典型材料压缩曲线1-1-高塑性材料;高塑性材料;2-2-低塑性材料低塑性材料第二章 1、规定非比例压缩应力σpc 2、抗压强度σbc试样压至破坏过程中的最大应力 如果试验时金属材料产生屈服现象,还可测定压缩屈服点σbc.3、相对压缩率ck ck =[(ho-hk)/ho] ×100%4、相对断面扩展率ck ck=[(Ak-Ao)/Ao] ×100%第二章 为了减小试样在压缩过程呈腰鼓状的趋势,试样的两端需加工成具有α角度的凹圆锥面,以便使试样能均匀变形压缩应力状态1=2=0,3=-max=0.5(45截面)smax==2理想情况(端部无摩擦)实际情况(端部摩擦)端部约束变形鼓肚复杂应力状态压缩断裂形式切断:碳纤维增强镁基复合材料压缩断裂正断:纵向裂纹,如陶瓷材料注意:高塑性材料压扁而不破坏3.4.43.4.4压缩试验压缩试验(1)应力状态软性系数α=2 ,应力状态较软,材料易产生塑性变形。
主要测定拉伸时呈脆性的金属材料在塑性状态下的力学行为2)拉伸时塑性很好的材料在压缩时只发生压缩变形而不会断裂脆性材料在压缩时除能产生一定的塑性变形外,常沿与轴线45°方向产生断裂,具有切断特征 软钢:易压缩成腰鼓状、扁饼状铸铁: 拉伸时断口为正断;压缩时沿45o方向切断因此,塑性变形小的材料,或者使用工况为压缩状的材料,应采用压缩实验(3)应力状态很软,适于低塑性及脆性材料;(4)一般不用于塑性材料;(5)试验时要减小端面摩擦;(6)一般规定h0/d0(h0/F0)为定值,以便试验结果能相互比较3.4.5 3.4.5 硬度试验硬度试验硬度:抵抗局部压入变形或刻划破裂的能力1 1、布氏硬度、布氏硬度 HB ( Brinell-hardness HB ( Brinell-hardness ) )实验原理:实验原理:布氏硬度计布氏硬度计 压头布氏硬度试验(单击)布氏硬度试验(单击)压痕几何相似:动画演示布氏硬度试验P/D2选配表布氏硬度计算式及符号表示布氏硬度计算式及符号表示HBS:淬火钢球作压头,适用于<<450HBS;450HBS;HBW:硬质合金作压头,适用于450HBSHBS~~650HBS;650HBS;HBHB表示表示方法:方法:XXX HBS(W) XX / XXX / XX硬度值压头直径(mm2) 试验力(0.1N)试验力保持时间(s)500HBW5/750表示用直径5mm硬质合金球在7500N试验力作用下保持10~15s测得的布氏硬度值为500例子:120HBS10/1000/30表示用直径10mm钢球压头在10000N试验力作用下保持30s测得的布氏硬度值为120特点及适用范围特点及适用范围优点:优点:测量数值稳定,准确;缺点:缺点:压痕大,操作费时,不适用批量生产和薄形件;适用范围适用范围 一般用于试验各种硬度不高的钢材、铸铁、有色金属等,也用于试验经淬火、回火但硬度不高的钢件。
2 2、洛氏硬度、洛氏硬度 HR ( Rockwll hardness HR ( Rockwll hardness ) )h1-h0洛氏硬度测试示意图洛氏硬度测试示意图10HRC≈HBS洛洛氏氏硬硬度度计计试验原理:改用压痕深度反映材料硬度洛氏硬度定义:0.002mm残余压痕深度为一个洛氏硬度单位压头:120º金刚石圆锥体或淬火钢球K——常数,钢球压头取130,金刚石压头取100洛氏硬度测量动画模拟洛氏硬度测量动画模拟洛氏硬度级别及其应用范围洛氏硬度级别及其应用范围洛氏硬度标尺为HRA、HRB、HRC三种,压头的类型、试验力下表选择:硬度符号压头类型载荷F/k g 硬度有效范围使用范围HRA金刚石圆锥体6070~85测量硬质合金、钢表、淬火层或渗碳层HRB直径为1.588mm钢球10025~100(相当60~230HB)测量非铁金属退火、退火等HRC金刚石圆锥体15020~67(相当HB230~700)调质钢、淬火钢等硬度值硬度值+HR+HR例:52HRC70HRA特点及适用范围优点:操作简便,压痕小,用于成品和薄形件;缺点:数据代表性不足,至少测3点求平均值;洛氏硬度HRC可以用于硬度很高的材料,在钢件热处理质量检查中应用最多。
表示方法试验原理:硬度定义与布氏硬度相同, 但改用136°张角金刚石四棱锥体(3)(3)维氏硬度维氏硬度 HVHV适用范围适用范围: :Ø 测量薄板类测量薄板类 ; ;Ø HV≈HBS ;HV≈HBS ;维氏硬度试验 小负荷维氏试验试验 显微维氏硬度试验 硬度符号 试验力/N硬度符号 试验力/N硬度符号 试验力/NHV549.03HV0.21.961HV0.010.09807HV1098.07HV0.32.942HV0.0150.1471HV20196.1HV0.54.903HV0.020.1961HV30294.2HV19.807HV0.0250.2452HV50490.3HV219.61HV0.050.4903HV100980.7HV329.42HV0.10.9807注:1.维氏硬度试验可使用大于980.7N的试验力; 2.显微维氏试验力为推荐值。












