好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

一维随机变量.ppt

126页
  • 卖家[上传人]:m****
  • 文档编号:590581684
  • 上传时间:2024-09-14
  • 文档格式:PPT
  • 文档大小:1.17MB
  • / 126 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第第3章章 一维随机变量一维随机变量 随机变量的概念 一维随机变量及其分布 一维离散型随机变量 二项分布 泊松分布 几何分布 一维连续型随机变量 均匀分布 指数分布 正态分布 一维随机变量函数的分布 3.1 3.1 随机变量的概念随机变量的概念 样本空间太任意,难以把握,需要将其数量化 要求问题涉及的随机事件与变量相关,这样可以将概率 和函数建立联系 正如随机事件是“其发生与否随机会而定”的事件; 随机变量就是“其值随机会而定”的变量其机会表现为试验结果,一个随机试验有许多可能的结果,到底出现哪一个要看机会,即有一定的概率 如掷骰子,掷出的点数X是一个随机变量,它可以取1,…,6这6个值中的1个,到底是哪一个,要等掷了骰子后才知道因此,随机变量是试验结果的函数 由此可知,随机变量与通常的函数概念没有什么不同,把握这个概念的关键在于试验前后之分:在试验前,无法预知随机变量将取何值,这要凭机会,“随机”的意思就在这里;一旦试验完成后,随机变量的取值就确定了 例1 在某厂大批产品中随机地抽出100个,其中所含废品数X是随机变量。

      全部可能结果为wi=“100个产品中有i个废品” (i=0,1,…,100) 故样本空间Ω={w0, w1, w2, …, w100} 随机变量是可能结果的函数:X=X(w) w X=X(w0)=0, X=X(w1)=1, X=X(w2)=2, …, X=X(w100)=100 所以,X=0,1,2,…,100 事件“废品数少于50”={w:X(w)<50} ={w0, w1, …, w49} ={X<50}事件{30≤X<50}={w30, w31, …, w49}例2 用天平秤量某物体重量的误差X是随机变量 可能结果 w=“某物体重量的误差为x” x(0,) X=X(w)=x w 所以,随机变量 X(0,) 随机事件这个概念包含在随机变量这个更广的概念之内。

      随机事件从静态的观点研究随机现象;随机变量则是从动态的观点去研究概率论的基础概念是随机变量 定定义义 如果对任意实数x有{w:X(w)<x}F,则称定义在样本空间上的单值实函数X=X(w)是随机变量其中w,F是事件域,{w:X(w)<x}是一个事件集合 通常用希腊字母X,Y来表示随机变量,用英文字母x、y表示其取值 说明:说明: 设X=X(w),w,X是定义在样本空间上的单值实函数,对于任一实数x,基本事件w的集合{w:X(w)<x}都是一随机事件,则称X=X(w)为随机变量 随机变量X=X(w)是基本事件w的函数,w是自变量,在不必强调w时,简记X(w)为X,而w的集合{w:X(w)<x}所表示的事件简记为{X<x} 定义中要求对任一实数x,{X<x}都是事件,表明{X<x}是所讨论问题的样本空间上一个适当确定的事件域F中的事件 定义随机变量后,随机事件可以用随机变量来描述例如对任意实数x,x1,x2可以证明,形如{w:X(w)=x}, {w:X(w)≤x},{w:X(w)>x}, {w:X(w)≥x},{w:x1<X(w)<x2}, {w:x1≤X(w)≤x2},等等,都是随机事件,在不必强调w时,简记{w:x1≤X(w)≤x2}为{x1≤X≤x2}。

      3.2 3.2 一维随机变量及其分布函数一维随机变量及其分布函数 我我们们不不仅仅关关心心X取取哪哪些些值值,,更更关关心心X以以多多大大的的概概率率取取那那些些值值,即关心,即关心X取取值值的概率的概率规规律律(通称通称为为X的分布的分布) 根据随机变量X的定义,对于每一个实数x,都有一个确 定 的 随 机 事 件 {w:X(w)< x}与 x对 应 , 因 此 , 概 率P{w:X(w)<x}是x的函数,该函数在理论和应用中都很重要,为此引进随机变量的分布函数定义定义定义 设X是一个随机变量,x是任意实数,函数 F(x)=P{w:X(w)<x}称为随机变量X的分布函数X的分布函数也常简记为 F(x)=P{X<x} 任一随机变量X的分布函数F(x),x(-, ),具有下列性质:(1) 单调不减性若x1<x2,则F(x1)≤F(x2) 证证 若x1<x2, 则有{X<x1}{X<x2} 根据概率的性质,得P{X<x1}≤P{X<x2} 即 F(x1)F(x2)(2) (3) 左连续性。

      对任意实数x0,有 如某实函数具有上述3个性质,则它可作为某随机变量的分布函数 v由分布函数,可以计算如下概率: 3.3 3.3 一维离散型随机变量一维离散型随机变量 随机变量全部的可能值只有有限个或至多可列,则称其为离散型随机变量 对于离散型随机变量,除了关心它全部的可能值之外,还要知道它以怎样的概率取这些值,对于一个以 为其全部不同可能值的离散型随机变量X,若 则称式(3-1)或称{p1,p2 ,…}为X的概率分布(律),简称分布律 离散型随机变量X的概率分布写作称为离散型随机变量X的概率分布列,简称分布列 离散型随机变量的概率分布{p1,p2,…,Pn,…}必须满足两个条件: (非负性条件) (归一化|规范性条件) 说明: 这里的求和是对一切xi<x进行的(如果这样的xi不存在,便规定F(x)=0),此时,F(x)等于X取小于x的所有xi的概率之和或累积,因此分布函数也叫累积概率。

      离散型随机变量的分布函数F(x)的图象为阶梯状,点x1,x2,…,xn都是F(x)的第一类(跳跃)间断点 •随机试验1:随机试验1:接连进行两次射击,0表示未击中目标,1表示击中目标样本空间:现在我们设定随机变量X表示击中目标的次数,则•随随机机试试验验22:观察某交换台单位时间内接到的呼唤次数样本空间Ω={0,1,2,…},以X表示接到的呼唤次数,那么,X=X(ω)=ω,ω∈Ω是离散型随机变量 例例3 3 设射手进行计分打靶练习,有如下规定:射入区域e1得2分,射入区域e2得1分,否则就得0分)一射手进行一次射击的得分是随机变量,其可能取得的值为0,1,2不同的射手在射击之前,他们进行一次射击的得分值都是不可预知的,他们进行一次射击的得分的概率不同射手甲在一次射击中得分X的概率分布为: 射手乙在一次射击中得分Y的概率分布为: 考虑射手甲的概率分布(律): 计算X的分布函数F(x)=P(X<x):当x≤0时, F(x)=P(X<x)=P()=0当0<x≤1时, F(x)=P(X<x)=P(X=0)=0当1<x≤2时, F(x)=P(X<x)=P(X=0)+P(X=1)=0.2当2<x时, F(x)=P(X<x)=P(X=0)+P(X=1)+P(X=2) =0+0.2+0.8=1 考虑射手乙的概率分布(律): 计算Y的分布函数F(y)=P(Y<y):当y≤0时, F(y)=P(Y<y)=P()=0当0<y≤1时, F(y)=P(Y<y)=P(Y=0)=0.6当1<y≤2时, F(y)=P(Y<y)=P(Y=0)+P(Y=1)=0.9当2<y时, F(y)=P(Y<y)=P(Y=0)+P(Y=1)+P(Y=2) =0.6+0.3+0.1=1 虽然两人在射击之前得分的可能值都是一样的,但两人取各可能值的概率完全不同,可以认为这是两个不同的随机变量。

      总总值值为为1的的概概率率,,以以不不同同的的方方式式分分布布到到各各种种可可能能的取值上,确定了不同的随机变量的取值上,确定了不同的随机变量 0-10-1分分布布( (两两点点分分布布) ):若随机变量X只能取两个值,其分布列为: 退化分布退化分布(单点分布单点分布):若随机变量X只取常数值C,即 实际上这时X并不是随机变量,为了方便和统一起见,将其看作随机变量 离散型均匀分布:离散型均匀分布:随机变量X的分布列为 例例4 4 已知离散型随机变量X的概率分布为试求出常数a解解 由于 3.3.3.1 3.1 二项分布二项分布 在1次试验中事件A出现的概率是p,则n重伯努利试验中,事件A出现的次数X是二项分布随机变量,其可能取得的值是 0, 1, 2, …, k, …, n有分布律 这个值也被记作b(k ; n,p),它正是二项式(px+q)n的展开式中xk 的系数,因而X得名“二项分布二项分布” 二项分布列是: 对不同的两项分布随机变量,其参数n,p的取值可以不一样常用X~B(n,p)表示X是参数n和p的二项分布随机变量。

      特别地,n=1时,二项分布为二值分布二值分布(两点分布两点分布),X~B(1,p)其分布列为 若X~B(n,p),由二项概率公式得定理1 定理定理1 1 在n重伯努利试验中,事件A发生的次数在k1和k2之间的概率是 在n重伯努利试验中,事件A至少发生r次的概率是 特别是在n重伯努利试验中,事件A至少发生1次的概率是 例例5 5 医生对5个人作某疫苗接种试验,设已知对试验反映呈阳性的概率为p=0.45,且各人的反映相应独立若以X表示反映为阳性的人数1)写出X的分布律2)求恰有3人反映为阳性的概率;(3)求至少有2人反映为阳性的概率解解 将观察1人对该接种疫苗试验的反映呈“阳性”(发生A)或“阴性”(发生 )看作是1次伯努利试验,对5个人试验看作是5重伯努利试验,则X~B(5,0.45)(1) X的分布律: (2)求恰有3人反映为阳性的概率: (3)求至少有2人反映为阳性的概率: 例例6 已知发射一枚地对空导弹可“击中”来犯敌机的概率是0.96,问在同样条件下需发射多少枚导弹才能保证至少有一枚导弹击中敌机的概率大于0.999?解解 设需要发射n枚导弹,则击中敌机的导弹数是随机变量X~B(n,0.96),则 取n=3,即需要发射3枚导弹。

      例例7 7 一个完全不懂阿拉伯语的人去参加一场阿拉伯语考试假设考试有5道选择题,每题给出n个结果供选择,其中只有一个结果是对的试问他居然能答对3题以上而及格的概率解解 每做1题是1次p=1/n的伯努利试验,这里A是“答题正确”,则考试是p=1/n的5重伯努利试验,在5题中恰好答对题数X~B(5,1/n),此人及格的概率为: 当n=3时,此值=0.29当n=4时,此值=0.10 定理定理2 2 设X~B(n,p),则当k=ent((n+1)p)时, b(k;n,p)的值最大 若(n+1)p为整数,则b(k;n,p)=b(k-1;n,p)同为最大值 证明:证明: 当k<(n+1)p时,r>1, 则b(k;n,p)>b(k-1;n,p), 概率随k的增大而增大; 当(n+1)p是整数且等于k时,r=1,则b(k;n,p)=b(k-1;n,p) 当k>(n+1)p时,r<1, 则b(k;n,p)<b(k-1;n,p), 概率随k的增大而减小; 综上所述,可得如下结论:(1)当(n+1)p恰为正整数,记为k0,则b(k0;n,p)=b(k0-1;n,p)同为二项分布概率的最大值;(2)当(n+1)p不是整数时,记k0=ent((n+1)p),ent表示数之整数部分;则b(k0;n, p)为二项分布概率的最大值。

      例例8 8(渔佬问题)(渔佬问题)渔佬想知道自己承包的鱼塘的收入解解 设鱼的总数为N,渔佬先从塘中网起100条鱼做上记号后放回塘里,过一段时间(使其均匀)再从中网起100条,发现其中有记号者为2条,由此可估计鱼的总数N,若每条鱼2斤,每斤5元,则可知其收入 在第二次打鱼时,由于塘中有记号的鱼有100条,在渔佬所网起的鱼中可能有记号,也可能没有记号设有记号的条数为X,则X服从二项分布 由定理2,当X=k0=ent((n+1)p)时,其概率最大此时认为 是合理的这里n=100,p=100/N, k0=2,解得N=5050(条),由此,鱼佬的收入可估计收入为 5050×2×5≈5(万元) 值得注意的是: X=2时取得最大概率只有: 3.3.3.2 3.2 泊松(泊松(PoissonPoisson))分布分布 若随机变量X以全体自然数为其一切可能值,X=0,1,2,…,其分布律为 其中参数>0为强度则称X服从参数的泊松分布,记为X~P()。

      因为>0 ,故有P(X=k)>0 k=0,1,2,…)即泊松分布的分布律,具备概率函数的两个性质即泊松分布的分布律,具备概率函数的两个性质 在实际问题中,有很多随机变量都近似服从泊松分布例如: 在任给一段固定的时间间隔内,来到公共设施(公共汽车站、商店、交换台等)要求给予服务的顾客个数; 炸弹爆炸后落在平面上某区域的碎弹片个数; 显微镜下看到的某种细菌的生长个数 n=10, p=0.4, =np=4 n=40, p=0.1 =np=4随着随着n n增大,若增大,若npnp不变不变, , 则二项分布与泊松分布逐渐接近则二项分布与泊松分布逐渐接近泊松分布与二项分布的关系泊松分布与二项分布的关系 定理定理(泊松定理) 设随机变量X服从二项分布B(n,p)(p(0,1),并与n有关),且满足 ,则 证明证明 用泊松分布代替两项分布的条件用泊松分布代替两项分布的条件 在实际应用中,当n很大(n≥10),p很小时(p≤0.1),有下面的泊松近似公式其中λ=np 例例9 9 设每次击中目标的概率为0.001,且各次射击是否中目标可看作相互无影响,若射击5000次,试求:(1)击中12弹的概率;(2)至少击中12弹的概率。

      解解 设X为击中目标的弹数,则X~B(5000,0.001) ,下面用近似公式计算其中λ=np=5000×0.001=5(1)击中12弹的概率为:(2)至少击中12弹的概率为: 例例10 由商店的销售记录知,某商品的月售出量X服从=10的泊松分布为能以95%以上的概率保证不脱销,问在无库存的情况下月底应进货多少?解解 商店备货过多将明显地提高成本,而长期货源不足则会影响商誉因此需用概率方法确定合适的备货量,依照问题的要求,若月底进货量为Q,则应使 P(X≤Q)≥0.95 P(X≤14)<0.95 P(X≤15)>0.95 应取Q=15 故月底进货该商品15件,可有95%以上的把握使该商品在下个月的经营中不会脱销 例例1111((合合作作问问题题)) 设有同类设备80台,各台工作是相互独立的,发生故障的概率都是0.01,并且一台设备的故障可由一个人来处理,试求:(1) 由1个人负责维修指定的20台设备,设备发生故障而不能及时维修的概率;(2) 由3个人共同负责维修80台设备时,设备发生故障而不能及时维修的概率。

      解解 (1)由一个人负责维修20台设备时,设X表示同一时刻发生故障的设备台数,则X~B(20,0.01)因为一个人在同一时刻只能处理1台发生故障的设备,所以设备发生故障而不能及时处理,即是在同一时刻至少有2台设备发生故障,于是所求概率为 也可用泊松公式近似:=np=200.01=0.2 (2) 由3个人共同负责维修80台设备时,设80台设备中发生故障的台数为X,则X~B(80, 0.01)当同一时刻至少有4台设备发生故障时,故障不能及时维修由泊松近似公式=np=800.01=0.8,所求概率为 可见,由三个人共同负责维修80台,即每人平均约维修27台,比一个人单独维修20台更好,既节约了人力又提高了工作效率 3.3.3.3 3.3 几何分布几何分布 如果随机变量的分布律为则称随机变量服从参数为p的几何分布,记为X~G(p)几何分布主要描述这样的情形:独立地连续做试验,直到事件A首次出现为止此时首次出现A时的试验次数为随机变量X,P(A)=p, 则X服从参数为p的几何分布如:某射手的命中率为p,此射手向一目标独立地连续进行射击,直到命中目标为止。

      若用X表示首次命中目标时的射击次数,则X服从参数为p的几何分布 这是p=0.3的几何分布: 例例1212 在石头、剪子、布的游戏中,问: (1) 甲方提出“若一次能决出胜负,则甲方赢;否则乙方 赢”,乙方能同意吗? (2) 比赛三次能决出胜负吗?解解 (1) P(甲方赢)=P(第一次就能决出胜负) =P(甲胜或乙胜) =P(甲胜)+P(乙胜)=1/3+1/3=2/3 P(乙方赢)=1-P(甲方赢)=1/3 故乙方不能同意 (2)比赛三次能决出胜负吗? 设X为决出胜负所需的比赛次数,则X的取值为{1,2,3,…},此为重复独立试验P(在1次比赛中能决出胜负)=2/3,于是X服从p=2/3的几何分布即 P(三次还不能决出胜负)=P(X≥3)=1-P(X≤3) 例例13 一个人要开门,他共有n把钥匙,其中仅有一把是能开此门的,现随机地从中取出一把钥匙来试开门,在试开时每一把钥匙均以1/n的概率被取用,问此人直到第S次试开时方才成功的概率是多少?解解 A={试开门成功} 几何分布具有如下特征:几何分布具有如下特征: 如X的分布律为g(k;p),则对任意正整数s、t,有 P(X>s+t︱X>s)=P(X>t)称几何分布具有“无记忆”性。

      证明证明 超几何分布超几何分布例例14 在一箱N件装的产品中混进了M件次品,今从中抽取n件(n≤M) ,求从中查出次品的件数X的概率分布解解 负二项分布负二项分布 在“成功”概率是p的贝努利试验中,出现第r次成功时所作的试验次数X所服从的分布称为负二项分布由于f(k;r,p)是负指数二项式 展开式中的项,故X所服从的分布称为负二项分布 由此也可以证明 证明证明 例例1515 两个同类型的系统,开始时各有N个备件,一旦出现故障,就要更换一个备件假定两个系统的运行条件相同,不同时发生故障试求当一个系统需用备件而发现备件已用光时,另一系统尚有r个备件的概率Pr (r=0,1, …,N)解解 只考虑出故障的时刻故障的出现看作是贝努利试验,有 要第一个系统缺备件而第二个系统剩r件,应该是A出现N+1次故障(前N次用去所有N个备件,最后一次故障发生时缺乏调换的备件),而A出现N-r次,这事件的概率为: 对于第二个系统先缺备件的情况可同样考虑,因此所求概率Pr为: 3.3.4 4 一维连续型随机变量一维连续型随机变量 当一个随机变量X的分布函数FX(x)可写成“变上限积分”的形式: 称X为连续型随机变量,称为fX(x)为X的概率分布密度,简称密度函数。

      可以证明,连续型随机变量的分布函数是连续函数 密度函数的性质:密度函数的性质: (3)而分布函数F(x)的导函数(在连续点上)就是其密度函数,即 对任意类型的对任意类型的随机变量均成立随机变量均成立 证明证明 (1)由定义知,显然f(x) ≥0 (2)分布函数性质知,由广义积分概念与定义知, (5) 密度函数f(x)并不直接表示概率值的大小但在区间很小时,f(x)的数值还是能反映出随机变量在x附近取值的概率大小的 上式表明,在小区间[x-x,x]内的概率值大约为密度值与区间长度x的乘积 (6) 可见,连续型随机变量X取一个固定值的概率为0并且有 对任意类型的对任意类型的随机变量均成立随机变量均成立 例例16 16 设随机变量X的分布函数为(1)求常数A、B;(2)判断X是否是连续型随机变量;(3)求 P{-1≤X<1/2}解解 (1)由分布函数性质得 (2)因为 所以F(x)不是连续函数,从而X不是连续型随机变量 例例1717 设已知连续型随机变量Y的密度函数是(1) 确定a的值;(2) 求Y的分布函数F(x);(3) 求概率P(Y2>1)。

      解解 (1)根据密度的性质,有a>0以及 并称该随机变量服从柯西(Cauchy)分布 (2) 求Y的分布函数F(x):(3)求概率P(Y2>1): 例例1818 向半径为R的圆形靶射击,假定不会发生脱靶的情况,弹着点落在以靶心O为中心,r为半径(r≤R)的圆形区域的概率与该区域的面积成正比设随机变量X表示弹着点与靶心的距离,试求X的分布函数F(x)及其密度函数f(x)解解 因为不会发生脱靶,所以X的一切可能值是[0,R] 当x≤0时,F(x)=P(X<x)=0 当0<x≤R时,F(x)=P(X<x)=kx2 由于F(R)=P(X<R)=1, kR2 =1 当x>R时,F(x)=P(X<x)=P(必然事件)=1 由于 所以,密度函数为: 3.4.13.4.1均匀分布均匀分布 最简单的连续型随机变量是密度函数在某有限区间取正的常数值,其余皆取零的随机变量,称为均匀分布 均匀分布密度函数f(x)为 其分布函数F(x)为 例例1919 随机地向区间(-1,1)投掷点,X为其横坐标,试求关于t的二次方程 t2+3Xt+1=0 有实根的概率。

      解解 X在(-1,1)上服从均匀分布,其密度函数为方程t2+3Xt+1=0 有实根的的充要条件是9X2-4  0则方程有实根的概率为 自自测测题题 某公共汽车站每隔5分钟有一辆汽车通过,乘客到达汽车站的任一时刻的可能性是相同的,求(1)乘客候车时间不超过3分钟的概率;(2)若甲、乙、丙分别独立等候1、2、3路汽车时,三人中至少有两个人等车时间不超过2分钟的概率答案答案:(1)P=0.6; (2)设Y={三人中至少有两个人等车时间不超过2分钟}, P{Y≥2}=0.352 3.4.2 3.4.2 指数分布指数分布 若一个连续型随机变量X具有概率密度函数:则称X为带参数a(>0)的指数分布随机变量,记作X~E(a) 其分布函数为 例例26 26 设到某服务窗口办事,需要排队等候,若等待的时间X是指数分布随机变量(单位:分钟),则其概率密度为 某人到此窗口办事,在等待15分钟后仍未能得到接待时,他就愤然离去,若此人在一个月内共去该处10次,试求: (1) 有2次愤然离去的概率; (2) 最多有2次愤然离去的概率; (3) 至少有2次愤然离去的概率。

      解解 首先求出他在任一次排队服务时,以愤然离去而告终的概率 在10次排队中愤然离去的次数Y~B(10,p) (1)有2次愤然离去的概率 P(Y=2)= (2)最多有2次愤然离去的概率 (3)至少有2次愤然离去的概率 P(Y2) 自测题自测题 设随机变量X具有分布密度试确定λ,并求P(X≤0.1)答案答案: λ=3 P(X≤0.1)=0.259 3.3.5 5 正态分布正态分布 在实际问题中,有许多随机变量都服从或近似服从正态分布,例如,测量误差;各种产品的质量指示(零件的尺寸、材料的强度、电子管的寿命…);生物学中,同一群体的某种特征(某种动物的身长、体重;某种植物的株高、单位面积产量,…)等等 在在理理论论上上可可以以证证明明,,若若X是是某某一一随随机机试试验验的的随随机机变变量量,,如如果果决决定定试试验验结结果果的的是是大大量量的的偶偶然然因因素素的的总总和和,,各各个个偶偶然然因因素素之之间间近近乎乎相相互互独独立立,,并并且且每每个个偶偶然然因因素素的的单单独独作作用用相相对对于于作作用用的的总和来说均匀地小,那么总和来说均匀地小,那么X就近似服从正态分布就近似服从正态分布。

      正态分布又叫高斯(Gauss)分布,它是最重要的连续型分布,在概率论中占有极其重要的地位,在实际中有着十分广泛的应用 称概率密度为 的随机变量X X服从正态分布(或高斯分布),记作X~N(,2),其中,>0,与是常数 正态分布的分布函数是 特别地称N(0,1)为标准正态分布,其概率密度常记为 其分布函数记为 若 X~N(  2 ),则结论当a=-∞或b=+∞时也成立证明证明 一般正态分布的概率可由标准正态分布计算一般正态分布的概率可由标准正态分布计算若 X~N(  2 ), 作标准变换:则新的随机变量X*~N(0 1) 正态分布的密度函数与分布函数有下列性质:正态分布的密度函数与分布函数有下列性质:(1) f(x)和F(x)处处大于零,且具有各阶连续导数;(2) f(x)在区间(-∞,μ)内单调增加,在区间(μ,+∞)内单调减少,在x=处取得最大值当x→-∞或x→+∞时, f(x)→0, 即x轴(y=0)是f(x)的渐近线 f(x)的图形关于直线x=对称,即f(-x)=f(+x)是X的数学期望(加权平均值)。

      =0时,则有f(-x)=f(x),即这时f(x)关于y轴(x=0)对称 固定时,越小,密度曲线越是尖狭; 固定时,越大,密度曲线越是平宽是X的标准差(描述了X的发散程度) (3) F(-x)=1-F( + x) 特别有F(-x)=1-F(x)(4) (5) 如果X~N(0,1),则P{|X|<x}=2Φ(x)-1证明(6) 如果X~N(0,1),则P{|X|>x}=2 [1-Φ(x)]证明 例例20 20 设X~N(0,1),借助于标准正态分布的分布函数 Φ(x)的表计算: (1)P{X<-1.24} (2)P{|X|<1.54} 例例21 21 设X~N(0,1),求使P{|X|>x}=0.1的x 例例22 22 设X~N(-1 4 ),试求P(-5X1), P(-2X2), P(|X|<1), P(|X|3/2)解解 =-1,2=4, =2 由于-x=1-(x) 例例2323 设已知测量误差X~N(0,102),现独立重复进行100次测量,求误差绝对值超过19.6的次数不少于3的概率。

      解解 这个问题既涉及正态分布,又涉及二项分布 第一步:以A表示一次测量中“误差绝对值超过19.6” 的事件,则有 第二步:以Y表示100次独立重复测量中,事件A发生的次数,则Y~B(100,0.05) 误差绝对值超过19.6的次数不少于3的概率为 P(Y≥3) =1-P(Y<3)第三步:由于n=100较大而p=0.05很小,故二项分布可用=np=5的泊松分布近似代替,查泊松分布表可得 P(Y≥3) =1-P(Y<3) = 1-P(Y=0)-P(Y=1)-P(Y=2) 例例2424 公共汽车车门的高度是按男子与车门顶碰头的机会在0.01以下来设计的设男子身高X服从=170cm, =6cm的正态分布,即X~N(170,62),试确定车门的高度解解 设车门的高度为hcm,根据设计要求应有 P(X>h)≤0.01 则 1-P(X≤h)≤0.01 即 P(X≤h)≥0.99 由于X~N(170,62), 例例25 25 从南郊某地乘车前往北区火车站搭火车有两条路线可走,第一条穿过市区,路程较短,但交通拥挤,所需时间(单位为分钟)服从正态分布N(50,100),第二条沿环城公路走,路线较长,但意外堵塞较少,所需时间(单位为分钟)服从正态分布N(60,16)。

      1)如有70分钟可用,问应走哪一条路线?(2)如只有65分钟可用,问应走哪一条路线? 解解 3.7 3.7 一维随机变量函数的分布一维随机变量函数的分布 当随机变量X的分布已知时,怎样求出它的函数Y=g(X)的分布 为了使Y有分布,要求Y是随机变量,因此对函数Y=g(x)也必须有一定的要求 为简单起见,只讨论g(x)是连续、分段连续或单调的情形,在这些情形下,如果X是随机变量,则Y=g(X)也是随机变量 在一些具体的分布中,可以了解解决这类问题的基本方法 例例27 27 设X的分布律为试求函数YX2,Z2X-1,W|X|+1 的分布解解 由X的分布律可列出下表:将表中取相同值的部分作适当并项,得YX2的分布律:X-2-1012P0.150.20.20.20.25X241014P0.150.20.20.20.25Y X2014P0.20.40.4 Z2X-1的分布律:W|X|+1 :将表中取相同值的部分作适当并项, 得W|X|+1的分布律为Z2X-1-5-3-113P0.150.20.20.20.25W| X | +1 32123P0.150.20.20.20.25W| X | +1 123P0.20.40.4 一般情况下,已知离散型随机变量X的分布律:则函数g(X)的分布(若某些g(xi)相等,合并同值项):Xx1x2……xn……Pp1p2……pn……g(X)g(x1)g(x2)……g(xn)……Pp1p2……pn…… 对连续型随机变量X,求其函数g(X)的分布。

      例例28 28 设随机变量X具有连续的分布密度fXx,试求Y=aX+b的(其中a,b是常数,且a0)分布密度fY(y)解解 设Y的分布函数为FY(y) 当a>0时, 当a<0时, 例例29 29 设随机变量X~N(,2),求 的密度函数Y(y)解解 由于X~N(,2),的密度函数是利用上例结果,得可见,当可见,当X X~~N(N( , ,  2 2) )时,则时,则服从任一正态分布的随机变量必定可以标准化服从任一正态分布的随机变量必定可以标准化 书面作业:书面作业:P53P53~~P56P56 3-43-4 3-53-5 3-7 3-7 3-15 3-15 3-18 3-18 3-22 3-22 3-27 3-27 例例30 30 (习题3-28) 设X~N(a , 2),求 的密度函数。

      解解 先求的分布函数FY(y)=P(Y<y)=P(eX <y)当y0时,FY(y)=P(eX <y)=P(不可能事件)=0当y>0时, FY(y)=P(eX <y)=P(X<lny) 则有密度函数: 证明证明 作业评讲作业评讲1、解、解 2、解、解 12、解、解 14、解、解 15、解、解 16、解、解 18、解、解19、解、解 23、解、解 25、解、解 27、解、解 28、解、解 29、解、解 30、解、解 。

      点击阅读更多内容
      相关文档
      安徽省安全员《A证(企业负责人)》冲刺试卷三.docx 2026年房地产经纪人《房地产经纪业务操作》预测试卷三.docx 安徽省安全员《A证(企业负责人)》模拟试卷一.docx 2026年房地产经纪人《房地产交易制度政策》模拟试卷四.docx 安徽省安全员《B证(项目负责人)》冲刺试卷二.docx 2026年房地产经纪人《房地产经纪专业基础》预测试卷四.docx 2026年房地产经纪人《房地产经纪业务操作》考前点题卷一.docx 2023年通信工程师《通信专业实务(传输与接入-无线)》试题真题及答案.docx 安徽省安全员《A证(企业负责人)》试题精选.docx 2026年房地产经纪人《房地产经纪专业基础》预测试卷二.docx 2026年房地产经纪人《房地产经纪业务操作》考前点题卷二.docx 2026年房地产经纪人《房地产经纪职业导论》冲刺试卷三.docx 2026年房地产经纪人《房地产交易制度政策》冲刺试卷三.docx 2026年房地产经纪人《房地产经纪专业基础》考前点题卷二.docx 2026年房地产经纪人《房地产经纪职业导论》冲刺试卷五.docx 2026年房地产经纪人《房地产经纪职业导论》冲刺试卷四.docx 2026年房地产经纪人《房地产交易制度政策》冲刺试卷一.docx 2026年房地产经纪人《房地产交易制度政策》冲刺试卷四.docx 安徽省安全员《B证(项目负责人)》冲刺试卷三.docx 2026年房地产经纪人《房地产经纪业务操作》模拟试卷二.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.