好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2022-2023届艺术生高三数学一轮复习:基础知识归纳(高中全部).docx

3页
  • 卖家[上传人]:杏**
  • 文档编号:279785736
  • 上传时间:2022-04-20
  • 文档格式:DOCX
  • 文档大小:31.05KB
  • / 3 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2022-2023届艺术生高三数学一轮复习:基础知识归纳(高中全部) 2022届艺术生高三数学一轮复习:基础知识归纳 第一部分 集合 1.理解集合中元素的意义.....是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… 2.数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决 3.(1) 元素与集合的关系:U x A x C A ∈??,U x C A x A ∈??. (2)德摩根公式: ();()U U U U U U C A B C A C B C A B C A C B ==. (3A B A A B B =?=U U A B C B C A ????U A C B ?=Φ U C A B R ?=注意:讨论的时候不要遗忘了φ=A 的情况. (4)集合12{,, ,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个; 非空真子集有2n –2个. 4.φ是任何集合的子集,是任何非空集合的真子集. 第二部分 函数与导数 1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一. 2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ; ⑥利用均值不等式 2 2 2 2b a b a ab +≤ +≤; ⑦利用数形结合或几何意义(斜率、距离、 绝对值的意义等);⑧利用函数有界性(x a 、x sin 、x cos 等);⑨平方法;⑩ 导数法 3.复合函数的有关问题: (1)复合函数定义域求法: ① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤ g(x) ≤ b 解出 ② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域. (2)复合函数单调性的判定: ①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y = ②分别研究内、外函数在各自定义域内的单调性 ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性. 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

      5.函数的奇偶性: ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件.... ⑵)(x f 是奇函数)()(x f x f -=-?;)(x f 是偶函数)()(x f x f =-?. ⑶奇函数)(x f 在0处有定义,则0)0(=f ⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性 ⑸若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性 6.函数的单调性: ⑴单调性的定义: ①)(x f 在区间M 上是增函数,,21M x x ∈??当21x x <时有12()()f x f x <; ②)(x f 在区间M 上是减函数,,21M x x ∈??当21x x ; ⑵单调性的判定:①定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法;④图像法 注:证明单调性主要用定义法和导数法 7.函数的周期性: (1)周期性的定义:对定义域内的任意x ,若有)()(x f T x f =+ (其中T 为非零常数),则称函数)(x f 为周期函数,T 为它的一个周期。

      所有正周期中最小的称为函数的最小 正周期如没有特别说明,遇到的周期都指最小正周期 (2)三角函数的周期:①π2:sin ==T x y ;②π2:cos ==T x y ; ③π==T x y :tan ;④| |2:)cos(),sin(ωπ?ω?ω= +=+=T x A y x A y ;⑤| |:tan ωπω= =T x y (3)与周期有关的结论: 本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第3页 共3页第 3 页 共 3 页第 3 页 共 3 页第 3 页 共 3 页第 3 页 共 3 页第 3 页 共 3 页第 3 页 共 3 页第 3 页 共 3 页第 3 页 共 3 页第 3 页 共 3 页第 3 页 共 3 页。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.