好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

因子分析的思想解读.doc

4页
  • 卖家[上传人]:桔****
  • 文档编号:547100415
  • 上传时间:2023-12-14
  • 文档格式:DOC
  • 文档大小:167.52KB
  • / 4 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 因子分析的思想解读彭大松(安徽师范大学体育学院 安徽 芜湖,241000) 摘要:因子分析方法应用在体育科研过程中,因子解释上困难让广大体育工作者大为困惑,甚至有人开始怀疑该方法的科学性和客观性本文从因子分析的统计思想上剖析了造成因子解释摸棱两可的原因并结合实例加以分析,指出因子分析的解释在现阶段还是一门艺术解释的是否合理,除了有数据本身性质影响外,还与分析者对因子分析方法掌握程度以及专业知识水平有关关键词:因子分析 思想 体育科研 解读 1 前言 因子分析方法是体育领域中用得最多的多元统计方法之一它的实际作用已为广大实际工作所证实令人费解的是并非每次运用它都是成功的有时,特别是针对多维变量所做的因子分析,难以有清晰的解释因此,有的实际工作者开始怀疑因子分析方法的科学性但同时,不同的人针对相同的数据所做的因子分析解释其结果却又不尽相同有的人通过因子分析能给出问题近乎完美的答案于是,又有人称因子分析是一种“艺术”[1] 因子分析因此也变得神秘起来了因子分析到底是艺术还是科学呢? 本文试图因子分析的统计思想为源头来剖析因子分析的实质指出因子分析不易解释的根本原因。

      并说明因子分析是一种统计方法,其运用得是否恰当是否合理,是依应用者对因子分析的把握程度,以及对专业知识的熟悉程度2 因子分析的统计思想 在实践中,往往收集到的数据是多指标的各指标之间通常不是独立的,或多或少存在着一定程度的关系因子分析的目的是通过少数几个变量去描述这众多变量见的协方差 关系这少数几个变量是潜在的,但不能观察的我们称之为因子[1] 2.1以相关为基础 在所收集到的众多变量中,必定存在某些是高度相关的,把这些高度相关的变量组成各组这样同一组内变量具有高度相关,而与其他的各组变量却只有较小的相关或是不相关这些组内高度相关的变量可以设想是一个共同的东西在影响着它们而导致高度相关这个共同的东西称之为公共因子如前所述,这些公共因子是潜在但不能观测的[2] 2.2.通过协方差来实现 因子分析是以相关为基础,从协方差或相关阵开始把大部分变异归结为少数几个公共因子所为把剩余的部分称为特殊因子3 正交因子模型分析3.1.模型的直观描述 既然因子分析的目的是用少数几个称之为公共因子的因子去描述众多变量间协方差关系巡着这一思路,针对每一个具体的变量去掉共同的东西剩余的变异部分由两个部分组成,一个是公共因子的贡献的部分,另一个就是剩余的部分,即特殊因子。

      须提醒一下,这里特殊因子与公共因子不应相关直观上,若公共因子与特殊因子相关则说明特殊因子中还可以抽出共同的东西到公共部分由此可见模型中公共因子与特殊因子是不相关的3.2 正交因子模型的数学表达式 考虑个成分的随机观测向量有均值为,协方差因子模型要求线性相依,其中有m个公共因子F1 F2…..Fm 和特殊因子组成具体如下: 用矩阵表示如下:满足以下条件:F和独立 为对角阵当满足以上条件即为正交因子模型从表达式形式看,变异部分线性相依于公共因子和特殊因子3.3.正交因子模型的几点解释3.3.1.“正交因子模型”中“正交”一词意味着各个公共因子间是不相关的这一点是来自于因子分析初始思想在“正交因子模型”统计思想中曾提到:“组内高度相关”而“组间相关性很小”这表明各个组受制于不同的因子到底小到什么程度才算“小”呢?这是个模糊的概念,在实际应用中不易确定于是表现在模型中就把它理想化为不相关即公共因子间是独立的这也是“正交”一词的来由于是就有了假定中的 cov(f)=I(即单位阵)3.3.2.许多人难以理解正交因子模型假定中为何cov(f)=I即各个公共因子方差相同且为1这一点似乎与实际不太相符,因为实践中的数据未必使每个公共因子的方差都是1。

      然而,这一困难在因子模型上是容易实现的因为模型的变异部分是线性相依于公共因子,于是在公共因子的系数上的调整可以使得因子的方差为1具体的说可以把方差不为1的公共因子,通过系数来化为方差为1前面的系数L也就反映了F与X相关关系心理学家们称L为因子载荷[1]3.4.因子分析不易解释的原因 许多实际工作者在按正交因子模型做完因子分析后,总会得到摸棱两可的解释其根本原因出在“正交”上正交因子模型是个理想化的模型它要求公共因子间不相关,然而现实问题中,这些公共因子并非完全不相关的(可能相关性很小)这样就出现了现实问题同模型间的矛盾依因子分析模型把事实上存在关系的变量“强行”让它们不相关但用正交模型做的结果,却要用实际收集到的数据去解释于是,实际问题与模型的矛盾导致解释上的麻烦这一点我们将在后面的例中看到4.因子旋转与因子解释的艺术 在实际应用因子分析中出现了难以解释的现象,根本原因是模型同实际数据的矛盾,而其直接原因表现在因子对变量的贡献不明确我们可以通过下图来说明这一情况,于是设想在不改变因子协方差结构的情况下,通过旋转坐标轴来实现这一目的见图1)4.1.旋转的理论基础 通过对载荷阵乘以一正交阵来实现因子旋转。

      变换坐标轴以后的因子模型的协方差结构与原来相同,这为因子旋转提供了坚实的理论基础参见文献[2]旋转的目的是以达到较理想的解释,通常通过最大方差旋转来实现[2]图14.2.因子解释的艺术 对相同的数据做因子分析,结果会因人而异解释的是否妥当与应用者本人对因子分析把握程度有关也与分析者对实际问题所涉及的专业知识有关下面以文献[2]中的一例来说明因子分析的艺术例 对二战后,奥运会十项全能运动数据的因子分析,每项得分经标准化后所得的相关阵如下: 100米 跳远 铅球 跳高 400米 110米栏 铁饼 撑杆跳高 标枪 1500米 1.0 0.59 0.35 0.34 0.63 0.40 0.28 0.20 0.11 -0.071.0 0.42 0.51 0.49 0.52 0.31 0.36 0.21 0.09 1.0 0.38 0.19 0.36 0.73 0.24 0.44 -0.08 1.0 0.29 0.46 0.27 0.39 0.17 0.18 1.0 0.34 0.17 0.23 0.13 0.39 1.0 0.32 0.33 0.18 0.00 1.0 0.24 0.34 -0.021.0 0.24 0.171.0 -0.001.0变量X因子载荷ML估计(未旋转)特殊方差因子载荷ML估计(已旋转)特殊方差 100米跳远铅球跳高400米110米栏铁饼撑杆跳高标枪1500米-0.090 0.341 0.830 -0.1690.065 0.433 0.595 0.275-0.139 0.990 0.000 0.0000.156 0.406 0.336 0.4450.376 0.245 0.671 -0.137-0.021 0.361 0.425 0.388-0.063 0.728 0.030 0.0190.155 0.264 0.229 0.394-0.026 0.441 -0.010 0.0980.998 0.059 0.000 0.0000.160.380.000.500.330.540.460.700.800.000.167 0.857 0.246 -0.1380.240 0.477 0.580 0.0110.966 0.154 0.200 -0.0580.242 0.173 0.632 0.1130.055 0.709 0.236 0.3300.205 0.261 0.589 -0.0710.697 0.133 0.180 -0.0090.137 0.078 0.513 0.1160.416 0.019 0.175 0.002-0.055 0.056 0.113 0.9900.160.380.000.500.330.540.460.700.800.00被解释方差累积比0.12 0.37 0.55 0.610.18 0.34 0.50 0.61从主成分因子分析发现前四个特征值为3.78 1.52 1.11 0.91 故取前四个做因子分析是合适的。

      下面是以ML估计对L进行估计,旋转前后起因子载荷与特殊方差对比如下表:未旋转时,因子解释:我们看到因子F1上唯有1500米有较大的载荷,而在其余的项目上载荷均较小,因此,可以称F1为耐力因子在第二因子F2上,铅球,铁饼,标枪有较大的载荷因为这些项目都是投掷项目,可以归结为手臂强壮因子在第三因子F3上有较大载荷的是100米,400米,可以命之为速度因子但F4上各项均有不大的载荷,这样F4的因子就不好命名旋转后,F1*上有较大载荷的是铅球,铁饼,都与手臂爆发力有关,可以将因子F1*命名感为爆发性臂力强度因子而400米,100米在F2*上有高载荷,因为这两项主要反映跑的速度的,故命之为跑的速度因子F3*上有高载荷的是跳远,跳高,110米栏,撑杆跳高通过比较发现这些项目主要反映腿部爆发力的,可以命之为腿部爆发性强度因子在F4*上唯有1500米有较高的载荷可以命之为跑的耐力因子比较旋转前后,可以看到旋转后载荷的重新分配更易于因子的解释尽管,F1*和F2*上也有不易解释的高载荷现象(通常大于0.4都看成有较大的载荷),但同旋转前比较起来要清晰多了我们看以下旋转前,表中的载荷分布情况,跳远和跳高在F2均有较大的载荷。

      另外,在F3中跳远和110米栏均有高载荷,这些在旋转前都不能有清晰的解释更甚至因子F4中均没有较大的载荷,所以不能解释须提醒的一点是,跳高 ,110米栏,撑杆跳高,标枪等几个项目上,无论是旋转前还是旋转过以后均有较大的特殊方差(大于0.4)这说明,前几个公共因子在解释这些项目上并不理想从这几项体育运动本身的特点来看,这几项均属于技术性较强的项目,成绩的好坏的关键在技术是否完善可能这几项有着其他几项所不具备的因子因此才出现特殊方差较大的情况由分析可以看出,称因子分析是一种“艺术”亦不为过5 结论与建议 通过对正交因子模型的分析,说明了正交因子模型的“理想化”同现实中的数据相矛盾导致了因子分析结果在解释上的困难表现在形式上就是载荷的分布不明确,给因子命名带来了麻烦客观上,在多数情况下实施因子旋转可以使得结果有个较清晰的解释通常遵循方差最大准则。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.