
动力工程及工程热物理排名.docx
14页动力工程及工程热物理排名 动力工程及工程热物理 目录 编辑本段 编辑本段研究方向 “动力工程及工程热物理”主要学科方向有热力循环理论与系统仿真、热流体力学与叶轮机械、内燃机燃烧与排放控制、汽车动力总成与控制、工程热物理、制冷空调中的能源利用、低温系统流动传热、煤的多相流燃烧热物理等注重与化工、生物、信息、环境等学科的交叉与结合,发展学科新生长点,包括燃料电池与燃气轮机联合发电、石油替代途径与新能源汽车、太阳能热利用与建筑节能、纳/微系统输送和温控、生物质气化发电、光催化制氢和电动汽车多能源动力控制系统等 动力机械及工程 目录 编辑本段学科概况 动力机械及工程学科以燃气轮机、汽轮机、内燃机和正在发展中的其它新型动力机械及其系统为对象,研究如何把燃料的化学能和流体动能安全、高效、低污染地转换成动力的基本规律和过程,研究转换过程中的系统和设 备,以及与此相关的控制技术它涉及能源、交通、电力、航空、农业、环境等与国民经济、社会发展及国防工业密切相关的领域。
动力机械及工程是“动力工程及工程热物理”一级学科的重点组成部分,它以工程热物理为主要理论基础,与工程力学、机械工程学、自动控制、计算机、环境科学、微电子技术等学科互相交融,密切相关本专业研究领域和应用范围极为广泛 本专业研究成果经常参加国内、国际学术交流近年科研成果分别获原国家教委、原机械工业部重大成果奖、二等奖、三等奖,并获得过国家自然科学奖二等奖及原机械工业部的一等奖和特等奖本专业一些科研项目与国外合作进行优秀的博士研究生将有机会赴国外进行联合培养 编辑本段培养目标 应坚实地掌握动力机械及相关基础学科的基础理论,熟悉学科的发展动向及国际学术前沿概况,在指导教师的指导下,具有独立完成具有一定理论意义或应用价值的科研工作的能力,并有新见解在实验技能、计算能力、应用相关学科专业知识解决本学科科学问题方面经受培养和训练,有严谨求实的科学作风能较熟练地掌握一门外国语,能阅读本专业的外文资料可胜任本专业或相邻专业的科研和工程技术工作或相应的科技管理工作 编辑本段业务范围 (一)学科研究范围动力系统与机械建模、仿真、优化,动力机械与设备的气动热力学,燃烧理论与技术,动力机械工作过程及排放净化,动力机械的控制理论与技术,热力机械的结构分析及设计方法,新型动力机械。
(二)课程设置 基础理论课数学(数理方程、矩阵论、计算方法、数理统计、最优化方法),高等热力学,高等传热学,高等工程流体力学,高等燃烧学,数值计算与数值模拟,多相流理论,热物理近代测试技术,现代控制理论专业课动力机械气动热力学,动力系统建模与仿真,动力机械的故障诊断,动力机械振动理论与模拟分析 课程设置应体现加强理论基础,拓宽专业知识,提高实验操作能力 热能工程 目录 编辑本段基本情况 一级学科:0807 动力工程及工程热物理 二级学科:080702热能工程 国家重点学科(热能工程)[1]:北京科技大学、华北电力大学、东南大学 编辑本段学科概况 “热能工程”学科是研究能源(着重于热能)的合理、高效、清洁地利用和转换的科学,研究和开发节能新技术、节能新工艺(流程)、新设备和新材料等,为开发高效的节能产品,淘汰低效、耗能高的产品奠定科学理论和工程技术基础 研究方向 热能工程专业目前主要有以下五个研究方向 1. 工业热设备工程 主要研究工业热设备的结构、控制等方面的理论和工程实际问题,改善设备结构和优化操作,开发和研制新型高效节能的工业热设备。
2. 工业热过程理论和技术 主要研究工业过程中的流动、传热和传质过程,建立热过程数学模型,为改进工艺、优化工艺参数和开发新工艺提供必要的理论基础 3. 燃料及其高效清洁燃烧技术 主要研究燃料的性质、燃料的改质、燃料的合理燃烧,开发新型高效、低污染的燃烧装置,合理组织炉内的燃烧过程 4. 工业热能系统工程 主要研究工业热设备间、工序间的联系和发展,组织好物流和能流,优化生产过程从企业整体出发,研究能源结构,合理利用能源并做好余热的利用和回收 工程热物理 求助编辑百科名片 编辑本段 能源科技的进步从人类利用能源和动力发展的历史看,古代人类几乎完全依靠可再生能源,人工或简单机械已经能够适应农耕社会的需要近代以来,蒸汽机的发明唤起了第一次工业革命,而能源基础,则是以煤为主的化石能源,从小规模的发电技术,到大电网,支撑了大工业生产相应的大规模能源使用石油、天然气在内燃机、柴油机中的广泛使用,奠定了现代交通基础,燃气轮机的技术进步使飞机突破声障,这些进一步适应了高度集中生产的需要但是化石能源过度使用,造成严重环境污染,而且化石能源资源终将枯竭,严重地威胁着人类的生存和发展,要求人类必须再一次主要地使用可再生能源。
这预示着人类必将再次步入可再生能源时代——一个与过去完全不同的、建立在当代高新技术基础上创新发展起来的崭新可再生能源时代面对这个时代的召唤,工程热物理学科的发展既要适应可再生能源分散的特点,又要能为大工业发展提供能源,需要构建分布与集中供能有机结合的新型能源系统在这个过程中,工程热物理学科面临新的机遇与挑战工程热物理学科的发展和能源科学技术进步对人类社会将产生重大影响,将会出现许多伟大的变革,包括能源科技的重大发展一些新的能源利用方式,如新型动力机械、新型发电技术、涌现的新能源等 编辑本段能源问题 能源问题是社会与经济发展的一个长期制约因素,关系全局的主要能源问题有:能源需求增长迅速,供需矛盾尖锐;能源结构不合理,优质能源短缺;效率低下,浪费惊人;环境影响更加严重,减排治污、保护生态刻不容缓;能源安全问题突出,全球战略势在必行等综上所述,我国面临能源和环境双重巨大压力,是经济和社会发展的长期瓶颈,是始终必须高度重视的重大问题能源发展、保护环境、节能减排对我国至关重要,是确保清洁、经济、充足、安全能源供应的根本出路大量研究和历史经验表明,解决能源与环境问题的根本途径是依靠科学技术进步,因此工程热物理等相关学科将承担起我国国民经济发展的能源与环境的重大需求,努力推进节能和科学用能已成为学科的指导思想和核心,而抓紧化石燃料的洁净技术、大力开发可再生能源和新能源技术则是工程热物理学科的发展战略重点。
编辑本段学科方向与进展 工程热物理是一个体系完整的应用基础学科,就其主要研究领域应属技术学科,每一个分支学科都有坚实的理论基础和应用背景工程热力学与能源利用分学科的基石是热力学第一、第二定律,目的是为从基本原理上考虑能源利用和环境问题提供理论与方法,其它分支学科在热力学定律基础上,拥有各具特色的理论和应用基础热机气动热力学与流体机械分学科的理论基础是牛顿力学定律,传热传质分学科的理论基础是传热、传质定律,燃烧学分学科的理论基础是化学反应动力学理论等等 1. 工程热力学与能源利用分学科 热力学基础研究方面,在统计热力学及分子模拟领域有两方面进展,一是分形理论等新的分析手段的引进,取得了好的效果;另一方面,统计热力学及分子模拟研究开始向实用化迈进 为满足国家节能减排的重大需求,各种余热驱动、低温余热利用以及大温差的制冷循环研究不断深入,吸收、吸附式制冷循环,复叠式制冷循环以及水基有机混合物相变蓄冷等新型蓄能技术被广泛研究热声理论得到快速发展的同时,热声制冷和热声发电技术在实验、应用方面的研究进展很快 能的综合梯级利用理论不断完善和发展分布式能源系统作为能的梯级利用技术的典型代表,在基本原理、关键技术和系统集成等全方位开展研究,为该技术产业化示范奠定了基础。
化学能与物理能综合梯级利用原理的提出拓展了能的梯级利用原理,提出了化石燃料与太阳能互补的间接燃烧能量释放新机理,拓展了一系列化学能与物理能综合梯级利用系统集成的创新 可再生能源与温室气体控制是能源与环境领域研究的重要主题我国近年来经历了对各种太阳能热发电形式的关键技术研究,并启动了国家太阳能热发电技术专项研究太阳能光催化分解水制氢研究在催化剂、制氢设备和制氢系统等方面取得实验室进展太阳能燃料转换技术的研究有望实现实用化的太阳能燃料开发在生物质发电、生物质制氢和液体燃料等方面也取得一定进展我国学者首次提出了能源转换利用与CO2分离一体化原理,实现低能耗甚至无能耗分离CO2,研究制定了适合我国国情的温室气体控制技术路线 2. 热机气动热力学与流体机械分学科 国际上现已采用三维粘性计算流体动力学设计航空发动机诸部件,尤其是叶轮机械设计叶轮机械设计系统由二维、准三维、定常设计到全三维、粘性、非定常设计的过渡是学科发展的趋势在航空发动机设计方面,上述趋势也充分体现在对风扇/压气机、对转涡沦技术和旋转冲压发动机技术的研究中 从热机气动热力学角度看,未来燃气轮机的科学技术发展需要进一步研究高性能叶轮机械内部非定常复杂流场结构和机理、与气动热力学紧密相关的燃气透平叶片冷却技术及其流热固耦合机理与优化设计方法。
相关工作围绕着压气机内部非定常流动及其控制结构的耦合问题、透平提高级负荷与非定常气动性能问题、透平叶片冷却及其流热固耦合基础问题,以及叶轮机械全三维设计理论及设计体系基本构架研究等科学问题展开 流体机械方面的研究在透平压缩机、水轮机、泵类流体机械、风力机等方向取得较大进展,上述工作为西气东输、三峡工程、南水北调以及风力发电等国家重大工程和紧迫需要提供了技术支持 3. 传热传质分学科 在导热研究方面,随着超快速激光加热技术以及MEMS/NEMS等微纳科技的发展,导热过程在时间尺度、空间尺度、环境温度以及热流密度等都在向极端状况扩展微纳尺度下的导热规律的研究是传热学发展的新的重要研究方向,它对微纳热电转换装置等高科技产品的研发具有重要的意义 对流传热的研究在保留了经典方向的深化和再认识拓展等内容之外,多趋向复杂和交叉领域非线性问题,湍流直接模拟,微尺度、跨尺度问题是自然对流研究的主 要方向对流换热过程强化和优化的研究热点是换热器和换热网络中的场协同理论、节能型强化技术的开发,以及污垢形成机理以及新型抗垢技术 辐射传热目前的发展趋势是研究内容的深化,以及趋向复杂和交叉领域,以符合航空航天、红外探测、目标与环境的红外特性、强激光及应用、功能材料制造以及生物医学等现代高新技术发展对辐射传热的需求。
4. 燃烧学分学科 在基础燃烧理论方面主要完善燃烧化学动力学机理,同时现阶段研究也偏重于污染物形成机理的探索和复杂机理的简化,另一方面越来越多地通过精确的燃烧过程的数值模拟来替代一般的实验性研究根据不同的研究对象和应用领域,燃烧学分别在燃料及生物质燃烧、垃圾废弃物焚烧、火灾燃烧、燃烧诊断,以及燃烧污染物控制等方面开展了大量研究 5. 多相流分学科 多相流数理模型及数值模拟方法当前的研究重点仍在两相流,三相流已在起步阶段,将逐渐成为重点近年来单相湍流流动中兴起的细观模拟方法, 主要是直接。
