好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

微波与等离子体合成课件.ppt

36页
  • 卖家[上传人]:枫**
  • 文档编号:567612060
  • 上传时间:2024-07-21
  • 文档格式:PPT
  • 文档大小:822.50KB
  • / 36 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第八章第八章 微波与等离子体合成微波与等离子体合成1.微波辐射法在无机合成中的应用;微波辐射法在无机合成中的应用;2.微波等离子体化学微波等离子体化学 微波微波v定义:通常是指波长为定义:通常是指波长为1m – 0.1mm范围内的电磁波,相应频范围内的电磁波,相应频率范围是率范围是300MHz – 3000GHzv雷达雷达::1 ~ 25 cm;;v通讯:其它波长;通讯:其它波长;v加热加热家用:家用:2450MHz((12.2 cm))工业:工业:915MHz((32.8 cm)) 微波的基本性质:穿透、吸收和反射v穿透:穿透:如如玻璃、塑料和瓷器 v微波透入介质时,与介质发生一定的相互作用,使介质的分子发生数千万次的震动,介质的分子间互相产生摩擦,引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致 v吸收吸收:如如水和食物 v物质吸收微波的能力,主要由其介质损耗因数来决定介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。

      由于各物质的损耗因数存在差异,微波加热就表现出选择性加热就表现出选择性加热的特点物质不同,产生的热效果也不同水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多因此,对于食品来说,含水量的多少对微波加热效果影响很大 v反射反射;如如金属 微波与材料的相互作用微波与材料的相互作用v根据根据材料材料对微波的反射和吸收的情况不同可以分为四种类型:对微波的反射和吸收的情况不同可以分为四种类型:1.良导体良导体 —— 金属物质,能反射微波,可用作微波屏蔽,也可用于传播金属物质,能反射微波,可用作微波屏蔽,也可用于传播微波能量(如黄铜或铝波导管);微波能量(如黄铜或铝波导管);2.绝缘体绝缘体 —— 玻璃,云母,部分陶瓷材料等,可以被微波穿透,几乎不玻璃,云母,部分陶瓷材料等,可以被微波穿透,几乎不吸收微波能量;吸收微波能量;3.微波介质微波介质 —— 能够不同程度地吸收微波能而被加热,特别是含水物质能够不同程度地吸收微波能而被加热,特别是含水物质吸能升温效果明显;吸能升温效果明显;4.磁性化合物磁性化合物 —— 微波加热效果主要来自交变电磁场对材料的极化作用。

      微波加热效果主要来自交变电磁场对材料的极化作用交变电磁场使材料内部的偶极子反复调转,产生更强的振动和摩擦,使交变电磁场使材料内部的偶极子反复调转,产生更强的振动和摩擦,使材料升温材料升温 1. 微波辐射法在无机合成中的应用微波辐射法在无机合成中的应用v1986年,年,Gedye等人首次将微波技术应用于有机合成;等人首次将微波技术应用于有机合成;v1988年,年,Baghurst和和Mingos等人首次用微波法进行无机化等人首次用微波法进行无机化合物和超导陶瓷材料的合成,以及之后进行的有机金属化合合物和超导陶瓷材料的合成,以及之后进行的有机金属化合物、配合物、嵌入化合物的合成物、配合物、嵌入化合物的合成 1.1 微波加热和加速反应机理微波加热和加速反应机理v微波加热原理:介质材料一般可分为极性材料和非极性材料微波加热原理:介质材料一般可分为极性材料和非极性材料在微波电磁场作用下,极性分子从原来的热运动状态转向依在微波电磁场作用下,极性分子从原来的热运动状态转向依照电磁场的方向交变而排列取向,产生类似摩擦热,在这一照电磁场的方向交变而排列取向,产生类似摩擦热,在这一微观过程中交变电磁场的能量转化为介质内的热能,使介质微观过程中交变电磁场的能量转化为介质内的热能,使介质温度出现宏观上的升高,这就是微波加热,即微波加热是介温度出现宏观上的升高,这就是微波加热,即微波加热是介质材料自身损耗电磁场能量而发热。

      质材料自身损耗电磁场能量而发热v金属材料金属材料 —— 电磁场不能透入内部而是被反射出来,所以电磁场不能透入内部而是被反射出来,所以金属材料不能吸收微波;金属材料不能吸收微波;v水水 —— 吸收微波最好的介质,所以凡含水的物质必定吸收吸收微波最好的介质,所以凡含水的物质必定吸收微波 微波加热的特点微波加热的特点微波加热微波加热常规加热常规加热加热速度加热速度使被加热物本身成为发热体,称之为内部加热方式,使被加热物本身成为发热体,称之为内部加热方式,不需要热传导的过程,内外同时加热,因此能在短时不需要热传导的过程,内外同时加热,因此能在短时间内达到加热效果间内达到加热效果热量从被加热物外部传入内部,逐步热量从被加热物外部传入内部,逐步使物体中心温度升高,加热速度慢使物体中心温度升高,加热速度慢导热性较差的物体所需的时间更长导热性较差的物体所需的时间更长均匀性均匀性物体各部位通常都能均匀渗透电磁波,产生热量,因物体各部位通常都能均匀渗透电磁波,产生热量,因此均匀性大大改善此均匀性大大改善 存在温度梯度存在温度梯度能耗能耗微波能只被被加热物体吸收而生热,加热室内的空气微波能只被被加热物体吸收而生热,加热室内的空气与相应的容器都不会发热,所以热效率极高,生产环与相应的容器都不会发热,所以热效率极高,生产环境也明显改善境也明显改善 能量损失很大能量损失很大操控性操控性热惯性极小,配用微机控制特别适宜于加热过程的自热惯性极小,配用微机控制特别适宜于加热过程的自动化控制动化控制 热惯性大,操控精度差热惯性大,操控精度差低温杀菌低温杀菌无污染微波能自身不会对食品污染,在保持食品营养无污染微波能自身不会对食品污染,在保持食品营养成份的同时能在较低的温度下杀死细菌成份的同时能在较低的温度下杀死细菌--选择性选择性对不同性质的物料有不同作用,非常适合于干燥(注对不同性质的物料有不同作用,非常适合于干燥(注意有些物质温度愈高吸收性愈好,造成恶性循环,出意有些物质温度愈高吸收性愈好,造成恶性循环,出现局部温度急剧上升造成过干甚至炭化的情况现局部温度急剧上升造成过干甚至炭化的情况 ))--安全性安全性无废水、废气、废物产生,无辐射遗留物存在无废水、废气、废物产生,无辐射遗留物存在 -- 1.2 沸石分子筛的合成沸石分子筛的合成v沸石分子筛:沸石分子筛:v合成方法合成方法水热法水热法 —— 能耗多,反应条件苛刻,周期长,回收率低;能耗多,反应条件苛刻,周期长,回收率低;微波辐射晶化法微波辐射晶化法 —— 反应条件温和,能耗低,反应速率快,反应条件温和,能耗低,反应速率快,粒径均一细小。

      粒径均一细小 NaA沸石的合成沸石的合成vA型沸石:型沸石:吸附剂,用于脱水、脱氨等等,可用于制备无磷洗衣粉吸附剂,用于脱水、脱氨等等,可用于制备无磷洗衣粉v微波辐射合成条件:微波辐射合成条件:2450 MHz,,65 ~ 325 W,,5 ~ 20 min;;1.合成产物相与原料配比密切相关;合成产物相与原料配比密切相关;2.提高微波功率可以缩短辐射时间;提高微波功率可以缩短辐射时间;3.原料化合物的搅拌和陈化对产物相有关键影响原料化合物的搅拌和陈化对产物相有关键影响 NaX沸石的微波合成沸石的微波合成vNaX沸石:沸石:低硅铝比八面体结构,一般在低温水热条件下合成,晶化低硅铝比八面体结构,一般在低温水热条件下合成,晶化时间为数小时至数十小时时间为数小时至数十小时v微波辐射合成条件:微波辐射合成条件: 2450 MHz,,65 ~ 195 W,,30 min;;v优势:优势:1.节省时间;节省时间;2.降低能耗降低能耗 APO-5和和APO-C的微波合成的微波合成v磷酸铝分子筛:磷酸铝分子筛:v合成方法:合成方法:1.水热法;水热法;2.微波法微波法在一定原料配比范围,可得到水热法不能得到的纯在一定原料配比范围,可得到水热法不能得到的纯APO-5产物;产物;降低模板剂量及微波功率,缩短微波辐射时间,可获得降低模板剂量及微波功率,缩短微波辐射时间,可获得APO-C。

      1.3 沸石分子筛的离子交换沸石分子筛的离子交换1.在微波作用下,水分子和稀土离子比使用一般加热方法时在微波作用下,水分子和稀土离子比使用一般加热方法时运动速率更快,动能更大,离子能够进入到较难交换的位运动速率更快,动能更大,离子能够进入到较难交换的位置,离子交换更为充分;置,离子交换更为充分;2.微波作用下,离子交换量更大;微波作用下,离子交换量更大;3.微波作用下,离子交换速率更快微波作用下,离子交换速率更快 1.4 微波辐射法在无机固相反应中的应用微波辐射法在无机固相反应中的应用v微波辐射法:微波辐射法:直接穿透样品,实现体加热直接穿透样品,实现体加热 —— 热能利用率热能利用率50 ~ 70%%vPb3O4的制备的制备 —— v碱金属偏钒酸盐的制备:碱金属偏钒酸盐的制备:v传统方法:碱金属碳酸盐传统方法:碱金属碳酸盐200℃℃预热预热2h,混料,,混料,700~950℃℃,,12~14h;;v微波辐射法:微波辐射法:200~500 W,数分钟;,数分钟;传统方法:传统方法:PbO,,470℃℃,,30 h;;微波辐射法:微波辐射法:PbO2,,500 W,,30 min CuFe2O4的制备的制备CuO+ Fe2O3 研磨混合研磨混合微波辐射微波辐射((350 W,,30 min))CuFeO4(四方或立方结构)(四方或立方结构) 传统方法:传统方法:23 h La2CuO4的制备的制备CuO+ La2O3 研磨混合研磨混合微波辐射微波辐射((500 W,,9 min)) La2CuO4 传统方法:传统方法:12 ~ 24 h YBa2CuO7的制备的制备CuO+ Y2O3 +Ba(NO3)2研磨研磨微波辐射微波辐射((500 W,,5 min))微波辐射微波辐射((130 ~ 500 W,,15 min)) 排除排除NO2 研磨研磨研磨研磨微波辐射微波辐射((25 ~~ 50 min))YBa2Cu3O7-x (四方结构)(四方结构) 缓慢冷却缓慢冷却YBa2Cu3O7-x (正交结构(正交结构 —— 超导特性)超导特性) 稀土磷酸盐发光材料的微波合成稀土磷酸盐发光材料的微波合成v原料:原料:以稀土离子磷酸盐为基质,某些稀土元素为激活剂;以稀土离子磷酸盐为基质,某些稀土元素为激活剂;v合成:合成:原料原料(溶液(溶液 / 凝胶)凝胶)微波辐射微波辐射7 ~ 10 min稀土磷酸盐发光体稀土磷酸盐发光体(晶态(晶态 / 非晶态非晶态 / 玻璃体)玻璃体) 1.5 多孔晶体材料上无机盐的高度分散多孔晶体材料上无机盐的高度分散v目的:目的:使催化剂在高比表面积的载体上充分分散。

      使催化剂在高比表面积的载体上充分分散vCuCl2 / NaZSM-5的制备:的制备:v常规方法:在某温度下加热数小时或数十小时完成反应;常规方法:在某温度下加热数小时或数十小时完成反应;v微波法:家用微波炉微波法:家用微波炉6 ~ 10 minv微波法的优势:微波法的优势:1.可以获得高负载量的可以获得高负载量的CuCl2;;2.制备时间显著缩短;制备时间显著缩短;3.工艺过程简单工艺过程简单 1.6 微波自蔓延燃烧合成(微波烧结)微波自蔓延燃烧合成(微波烧结)v定义:用微波辐射来替代传统热源,均匀混合的物料或预定义:用微波辐射来替代传统热源,均匀混合的物料或预先成型的坯料通过自身对微波能量的吸收达到一定高的温先成型的坯料通过自身对微波能量的吸收达到一定高的温度,引发燃烧反应或完成烧结过程度,引发燃烧反应或完成烧结过程v特点:特点:1.采用微波辐射,样品温度迅速达到起火点,并能够保证反采用微波辐射,样品温度迅速达到起火点,并能够保证反应在足够高的温度下进行,反应时间短;应在足够高的温度下进行,反应时间短;2.通过调整通过调整反应参数反应参数,可以人为控制燃烧波的传播可以人为控制燃烧波的传播。

      样品质量、压紧密度、微波功率、反应物颗粒大小、添加剂种类和数量样品质量、压紧密度、微波功率、反应物颗粒大小、添加剂种类和数量 2 微波等离子体化学微波等离子体化学v等离子体等离子体 —— 物质的第四态物质的第四态v获得方法获得方法加加 热热放放 电电光激励光激励直流放电直流放电射频放电射频放电微波放电微波放电 微波等离子体的优势微波等离子体的优势v属于无电极放电,不存在电极污染问题;属于无电极放电,不存在电极污染问题;v电离度高,电子浓度大,电子和气体的温度比电离度高,电子浓度大,电子和气体的温度比 Te / Tg 很大,即电子动能很大,即电子动能很大而气体分子温度较低很大而气体分子温度较低 —— 适合于非若稳定物种的合成,高温物质的适合于非若稳定物种的合成,高温物质的制备,在温和条件下完成通常需要高温高压的反应;制备,在温和条件下完成通常需要高温高压的反应;v与其它方法相比对同种气体放电时的谱带更宽与其它方法相比对同种气体放电时的谱带更宽 ——增强气体分子的激发、增强气体分子的激发、电离和离解,自由基寿命更长;电离和离解,自由基寿命更长;v可以把等离子体封闭在特定空间可以把等离子体封闭在特定空间 —— 使加工区域与放电空间分离;使加工区域与放电空间分离;v微波放电能导致电子回旋共振,增加放电频率,提高工艺质量。

      微波放电能导致电子回旋共振,增加放电频率,提高工艺质量 2.1 微波等离子体及其特点微波等离子体及其特点v等离子体特性的描述:等离子体特性的描述:1.德拜长度德拜长度 —— 等离子体电中性条件成立的最小空间尺度;等离子体电中性条件成立的最小空间尺度;2.振荡频率振荡频率 —— 等离子体电中性条件成立的最小时间尺度等离子体电中性条件成立的最小时间尺度v等离子体类型:等离子体类型:1.热等离子体(高温等离子体)热等离子体(高温等离子体)—— 焊弧,电弧炉,等等;焊弧,电弧炉,等等;2.冷等离子体(低温等离子体)冷等离子体(低温等离子体)—— 辉光放电,微波等离子体,等等辉光放电,微波等离子体,等等 2.2 等离子体中主要基元反应过程等离子体中主要基元反应过程1.电离;电离;2.激发;激发;3.复合过程;复合过程;4.附着和离脱附着和离脱 2.1.1 电离过程电离过程v电离是形成微波等离子体(低温等离子体)必不可电离是形成微波等离子体(低温等离子体)必不可少的基元过程,包括:少的基元过程,包括:a)电子碰撞电离电子碰撞电离b)亚稳态粒子的作用及亚稳态粒子的作用及Penning电离电离c)离子碰撞电离离子碰撞电离d)光电离光电离 a) 电子碰撞电离电子碰撞电离v根据电离机制,可以分为:根据电离机制,可以分为:1.直接电离:分子受高速自由电子撞击而电离的过程;直接电离:分子受高速自由电子撞击而电离的过程;2.离解电离:多原子分子受到撞击发生离解电离的过程;离解电离:多原子分子受到撞击发生离解电离的过程;3.累积电离:分子先被激励成激发态,再经自由电子撞击而电离的过程。

      累积电离:分子先被激励成激发态,再经自由电子撞击而电离的过程 b) 亚稳态粒子的作用及亚稳态粒子的作用及Penning电离电离v亚稳态粒子的生成机制:亚稳态粒子的生成机制:基态基态激发态激发态亚稳态亚稳态 亚稳态粒子参与的电离过程亚稳态粒子参与的电离过程v亚稳态粒子的累积电离:亚稳态粒子的累积电离:vPenning电离:电离:中性粒子与亚稳态粒子撞击而电离的过程;中性粒子与亚稳态粒子撞击而电离的过程;v亚稳态粒子间的碰撞电离:亚稳态粒子间的碰撞电离: c) 离子碰撞电离离子碰撞电离v分子受粒子撞击而电离的过程:分子受粒子撞击而电离的过程:v在辉光放电等离子体中该过程较不重要在辉光放电等离子体中该过程较不重要 d) 光电离光电离v分子受光照而电离的过程分子受光照而电离的过程v发生条件:设某种粒子的电离能为发生条件:设某种粒子的电离能为Ei,要求光子能量满足,要求光子能量满足hv > Eiv激发源激发源入射光入射光等离子体辐射等离子体辐射 2.1.2 激发过程激发过程v在弱电离等离子体中,中性粒子的激发主要由电子碰撞引起在弱电离等离子体中,中性粒子的激发主要由电子碰撞引起非弹性碰撞非弹性碰撞基态原子基态原子自由电子自由电子 跃迁跃迁 光学允许跃迁光学允许跃迁光学禁阻跃迁光学禁阻跃迁 —— 亚稳跃迁亚稳跃迁 2.1.3 复合过程复合过程v复合是电离的逆过程复合是电离的逆过程 —— 电离产生的正负荷电粒子重新结电离产生的正负荷电粒子重新结合成中性原子或分子的过程,包括:合成中性原子或分子的过程,包括:1.三体碰撞复合三体碰撞复合2.辐射复合辐射复合3.正负离子碰撞复合正负离子碰撞复合辐射复合:电荷交换复合:三体复合: 2.1.4 附着和离脱附着和离脱v放电等离子体中的荷电粒子放电等离子体中的荷电粒子v附着:附着:原子或分子捕获电子生成负离子的过程;原子或分子捕获电子生成负离子的过程;v离脱:离脱:附着的逆过程。

      附着的逆过程v附着机制:附着机制:包括电子附着,辐射附着,三体附着,离解附着,等等包括电子附着,辐射附着,三体附着,离解附着,等等电子电子正离子正离子负离子负离子 固体物质固体物质M的表面催化作用,促进气体分子离解的表面催化作用,促进气体分子离解和复合和复合表面处理(表面改性)表面处理(表面改性) 等离子体化学气相沉积;等离子体化学气相沉积; 溅射制膜,等等溅射制膜,等等集成电路中的等离子体刻蚀;集成电路中的等离子体刻蚀;等离子体灰化去除光刻胶;等离子体灰化去除光刻胶;分析化学中的有机物样品低温灰化;分析化学中的有机物样品低温灰化;等离子体化学气相输运,等等等离子体化学气相输运,等等等离子体的反应类型等离子体的反应类型 2.3 获得微波等离子体的方法和装置获得微波等离子体的方法和装置 2.4 微波等离子体的应用微波等离子体的应用v光导纤维光导纤维v强功率激光激发源强功率激光激发源v太阳电池薄膜制备太阳电池薄膜制备v超导薄膜制备超导薄膜制备v微波等离子体刻蚀微波等离子体刻蚀v金刚石薄膜合成金刚石薄膜合成v合成氨合成氨v氮氧化物合成氮氧化物合成v聚合物薄膜与无机薄膜制备聚合物薄膜与无机薄膜制备 需要掌握的内容需要掌握的内容v1 微波与材料的相互作用包括的几种类型微波与材料的相互作用包括的几种类型v2 微波加热的原理和特点微波加热的原理和特点v3 微波加热法在无机材料合成中的应用具体实例微波加热法在无机材料合成中的应用具体实例v4 什么是什么是微波自蔓延燃烧合成法及其特点微波自蔓延燃烧合成法及其特点v5 微波等离子体的优势微波等离子体的优势v6 等离子体的主要基元反应包括哪些等离子体的主要基元反应包括哪些 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.