好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

数字信号处理-基于计算机的方法(第四版)第九章答案.pdf

38页
  • 卖家[上传人]:suns****4568
  • 文档编号:90260955
  • 上传时间:2019-06-10
  • 文档格式:PDF
  • 文档大小:7.81MB
  • / 38 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • Not for sale 1 SOLUTIONS MANUAL to accompany Digital Signal Processing: A Computer-Based Approach Fourth Edition Sanjit K. Mitra Prepared by Chowdary Adsumilli, John Berger, Marco Carli, Hsin-Han Ho, Rajeev Gandhi, Martin Gawecki, Chin Kaye Koh, Luca Lucchese, Mylene Queiroz de Farias, and Travis Smith Copyright © 2011 by Sanjit K. Mitra. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of Sanjit K. Mitra, including, but not limited to, in any network or other electronic Storage or transmission, or broadcast for distance learning. Not for sale 2 Chapter 9 9.1 We obtain the solutions by using Eq. (9.3) and Eq. (9.4). (a) € δp=1−10−α p/20 =1−10−0.24 /20= 0.0273,δs=10−αs /20 =10−49/20= 0.0035. (b) € δp=1−10−α p/20 =1−10−0.14 /20= 0.016,δs=10−αs /20 =10−68/20= 0.000398. 9.2 We obtain the solutions by using Eqs. (9.3) and (9.4). (a) € αp= −20log101−δp ()= −20log10(1−0.04) = 0.3546dB, € αs= −20log10δs( )= −20log100.08()= 21.9382 dB. (b) € αp= −20log101−δp ()= −20log10(1−0.015) = 0.1313dB, € αs= −20log10δs( )= −20log100.04()= 27.9588 dB. 9.3 € G(z) = H2(z), or equivalently, € G(e jω) = H2(ejω) = H(ejω)2. Let € δpand € δs denote the passband and stopband ripples of € H(e jω), respectively. Also, let € δp,2= 2δp, and € δs,2 denote the passband and stopband ripples of € G(e jω), respectively. Then € δp,2=1−(1−δp)2, and € δs,2= (δs)2. For a cascade of sections, € δp,M=1−(1−δp)M,and € δs,M= (δs)M. 9.4 HLP(ejω) ω ωp ωs π –ωp–ωs –π δs 1+δp 1– δp 0 ω HHP(ejω) π–π δs 1+ δp 1– δp π − ωpπ − ωs–(π –ωs)–(π –ωp) 0 Therefore, the passband edge and the stopband edge of the highpass filter are given by € ωp,HP= π −ωp, and € ωs,HP= π −ωs, respectively. 9.5 Note that € G(z) is a complex bandpass filter with a passband in the range € 0 ≤ω≤ π. Its passband edges are at € ωp,BP=ωo±ωp,and stopband edges at € ωs,BP=ωo±ωs. A real coefficient bandpass transfer function can be generated according to € GBP(z) = HLP(e jωoz)+ HLP(e– jωoz) which will have a passband in the range € 0 ≤ω≤ π Not for sale 3 and another passband in the range € –π ≤ω≤ 0. However because of the overlap of the two spectra a simple formula for the bandedges cannot be derived. HLP(ejω) ω ωp ωs π –ωp–ωs –π δs 1+δp 1– δp 0 ω G(ejω) π –π δs 1+ δp 1– δp 0ωo ωo+ωs ωo+ωpωo− ωp ωo− ωs 9.6 (a) € hp(t) = ha(t)⋅ p(t) where € p(t) =δ(t − nT). n=−∞ ∞ ∑ Thus, € hp(t) =ha(nT) n=−∞ ∞ ∑ δ(t − nT) We also have, € g[n] = ha(nT). Now, € Ha(s) =ha(t)e−st −∞ ∞ ∫ dt and € Hp(s) =hp(t)e−st −∞ ∞ ∫ dt =ha(nT)δ(t − nT)e−st −∞ ∞ ∫ dt n=−∞ ∞ ∑ =ha(nT)e−snT n=−∞ ∞ ∑ . Comparing the above expression with € G(z) =g[n]z−n n=−∞ ∞ ∑ =h(nT)z−n n=−∞ ∞ ∑ , we conclude that € G(z) = Hp(s) s= 1 T lnz . We can also show that a Fourier series expansion of p(t) is given by € p(t) = 1 T e−j(2πkt /T) k=−∞ ∞ ∑ . Therefore, € hp(t) = 1 T e− j(2πkt /T) k=−∞ ∞ ∑ ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ha(t) = 1 T ha(t)e−j(2πkt /T) k=−∞ ∞ ∑ . Hence, € Hp(s) = 1 T Has+ j 2πkt T ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ k=−∞ ∞ ∑ . As a result, we have € G(z) = 1 T Has+ j 2πkt T ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ k=−∞ ∞ ∑ s= 1 T lnz. (7-1) (b) The transformation from the € s-plane to € z-plane is given by € z = esT. If we express € s =σo+ jΩo, then we can write € z = re jω = eσoTe jΩoT . Therefore, Not for sale 4 € z = 1,for σo1. ⎧ ⎨ ⎪ ⎩ ⎪ Or in other words, a point in the left-half -plane is mapped onto a point inside the unit circle in the € z-plane, a point in the right-half -plane is mapped onto a point outside the unit circle in the € z-plane, and a point on the jω-axis in the € s- plane is mapped onto a point on the unit circle in the € z-plane. As a result, the mapping has the desirable properties enumerated in Section 9.1.3. (c) However, all points in the € s-plane defined by € s =σo+ jΩo± j 2πk T , k = 0, 1, 2, …,, a are mapped onto a single point in the € z-plane as € z = eσoTe j Ωo±2πk T ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ T = eσoTe jΩoT . The mapping is illustrated in the figure below 1 σ −1 jΩzIm zRe z-plane -planes T 3π π T – T 3π – π T Note that the strip of width € 2π/T in the € s-plane for values of € s in the range € − π T ≤ Ω≤ π T is mapped into the entire € z-plane, and so are the adjacent strips of width € 2π/T. The mapping is many-to-one with infinite number of such strips of width € 2π/T. It follows from the above figure and also from Eq. (7-1) that if the frequency response € Ha(jΩ) = 0 for € Ω ≥ π T , then € G(e jω) =1 T Ha(j ω T ) for € ω≤π, and there is no aliasing. (d) For € z = e jω = e jΩT , or equivalently, € ω= ΩT. 9.7 Assume € ha(t) is causal. Now, € ha(t) =Ha(s)estds.∫ Hence, € g[n] = ha(nT) =Ha(s)∫esnTds. Therefore, Not for sale 5 € G(z) =g[n]z−n n=0 ∞ ∑ =Ha(s)esnTz−n∫ n=0 ∞ ∑ ds =Ha(s)z−n n=0 ∞ ∑ esnT∫ds = Ha(s) 1−esTz−1 ∫ ds . Hence € G(z) =Residues Ha(s) 1−esTz−1 ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ all poles of Ha(s) ∑ . 9.8 € Ha(s) = A s+α . The transfer function has a pole at € s = −α. Now € G(z) = Residue at s=–α A 。

      点击阅读更多内容
      相关文档
      Unit2 Health and Fitness语法课件-(高教版2023·基础模块2).pptx 九年级数学提升精品讲义 用配方法求解一元二次方程(原卷版).docx 九年级数学提升精品讲义 一元二次方程的根与系数的关系(解析版).docx 2025学年九年级化学优学讲练(人教版) 化学实验与科学探究(解析版).docx 九年级数学提升精品讲义 一元一次不等式与一元一次不等式组(原卷版).docx 九年级数学提升精品讲义 因式分解(解析版).docx 九年级数学提升精品讲义 相似三角形的性质(原卷版).docx 2025年 初中七年级数学 相交线与平行线 知识突破速记与巧练(原卷版).docx 九年级数学提升精品讲义 中点模型之斜边中线、中点四边形(解析版).docx 2025学年九年级化学优学讲练(人教版) 分子和原子(解析版).docx 九年级数学提升精品讲义 正方形的性质(原卷版).docx 九年级数学提升精品讲义 用因式分解法求解一元二次方程(解析版).docx 2025年 初中七年级数学 实数 知识突破速记与巧练(原卷版).docx 九年级数学提升精品讲义 应用一元二次方程(原卷版) (2).docx 2025年 初中七年级数学 相交线与平行线 压轴专练速记与巧练(解析版).docx 九年级数学提升精品讲义 用公式法求解一元二次方程(解析版).docx 2025学年九年级化学优学讲练(人教版) 化学方程式的书写(原卷版).docx 九年级数学提升精品讲义 应用一元二次方程(解析版) (2).docx 2025年 初中七年级数学 数据的收集、整理与描述 综合测试速记与巧练(解析版).docx 九年级数学提升精品讲义 中点模型之斜边中线、中点四边形(原卷版).docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.