
广东省广州市2025年普通高中毕业班综合测试(二)(广州二模)数学参考答案
16页1、启用前注意保密试卷类型:B2025年广州市普通高中毕业班综合测试(二)数 学一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一 项是符合题目要求的.1. 设集合 ,则 的元素个数为A. 4 B. 3 C. 2 D. 1【答案】B【解析】 , 3 个元素,选 B.2. 已知复数 满足 ,则 的最小值为A. 3 B. 2 C. 1 D. 0【答案】 【解析】令 ,则 ,则 (x, y)在(0,2)为圆心1为半径的圆上, ,选 C.3. 声强级 (单位: )由公式 给出,其中 为声强(单位: ).轻柔音乐的声强一般在 之间,则轻柔音乐的声强级范围是A. B. C. D. 【答案】C【解析】 ,则 , ,选 C.4. 的展开式中 的系数为A. 24 B. -24 C. -36 D. -40【答案】D【解析】 展开式第 项 ,即 系数 -40,选 D.【点评】二项式展开的经典题,易错在分项相乘时的遗漏。拆解(x+1/x)(1-2x)是关键,部分同学可能只计算 项或 项中的一项而漏解。需注意:展开时必须穷举所有可能的乘积组合,尤其是交叉项的系数叠加。本
2、题训练多项式乘法中的系统性思维。5. 已知 ,则 ,则 A. B. C. 2 D. 3【答案】A【解析】 ,选 A.【点评】三角恒等式与方程结合的难题。通过 与 的公式转化,关键在分子分母的因式分解技巧。部分同学可能在化简 2tan/(1-tan)=cos/(1+sin2)时迷失方向,建议引入辅助变量 简化计算。此题考验三角恒等变形的熟练度和代数运算的耐心。6. 已知函数 若函数 恰有 2 个零点,则实数 的取值范围是A. B. C. D. 【答案】B【解析】 时, 无解. ,则 有两正根, 矛盾, 当 时, 有且仅有一个根,则 即 有且仅有一个正根,成立, ,选 B.【点评】 分段函数零点问题, 用参数分离法分析图像交点, 更需注意分段讨论的逻辑严谨性。 当 a 0 时,需分别讨论指数函数和对勾函数的零点个数,部分同学可能忽略 x 0 和 x 0 区间的不同性质,误判交点数量。此题检验分段函数分析和数形结合能力。7. 已知椭圆 的左、右焦点分别为 ,过 的直线与 相交于 两点,且 ,则 的离心率为A. B. C. D. 【答案】D【解析】 ,则 ,选 D.【点评】椭圆几何性质的深度应
3、用。通过设边长利用余弦定理,关键在椭圆定义与焦半径性质的综合应用。8. 已知函数 在 上的所有极值点从小到大依次记为 ,则 A. -32 B. -16 C. -8 D. -4【答案】B【解析】 在 上有 4 个变号零点 在 上有 8 个极值点,且由 关于(0, - 2)中心对称知 ,选: B. 【点评】极值点与对称性的综合题。利用导数求零点,核心在于中心对称性的观察。部分同学可能陷入求导后解三角方程的复杂计算,忽略 关于(0,-2)对称的本质。记住:对称性可极大简化求和问题。此题训练高阶函数的整体性质分析能力。二、选择题:本题共 3 小题,每小题 6 分,共 18 分.在每小题给出的选项中,有多项符合题目 要求. 全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分.9. 一组成对样本数据 的散点位于一条直线附近,它的样本相关系数 (其中 ),由最小二乘法求得经验回归方程 (其中 ,则A. 若 ,则 B. 若 ,则成对数据 的样本相关系数 等于 C. 若 ,则成对数据 的样本相关系数 大于 D. 若 ,则成对数据 的经验回归方程 【答案】ABD【解析】 ,则 ,则 , A 对.
4、 相关系数不变, B 对. 错. 对,选 .【点评】统计概念辨析题。正确识别相关系数与回归系数的关系,需强调数据线性变换对统计量的影响。部分同学可能误认为 选项中系数扩大会影响相关系数,实则 仅度量线性关系的强度,不受尺度影响。此题检验统计概念的精确理解。10. 瑞士著名数学家欧拉在1765年提出:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”. 若 的三个顶点坐标分别为 , , ,其 “欧拉线” 为 ,圆 ,则A. 过 作圆 的切线,切点为 ,则 的最小值为 4B. 若直线 被圆 截得的弦长为 2 ,则 C. 若圆 上有且只有两个点到 的距离都为 1 ,则 D. 存在 ,使圆 上有三个点到 的距离都为 1【答案】BC【解析】 中点 的外心与垂心都在 上,其欧拉线 方程为 .对于 ( 时可取 ), 错.对于 ,说明 过圆心 正确.对于 ,当 与圆相交或相切时,显然均满足, ,当 与圆相离时,有 , , 正确.由对 的分析知,圆 上至多有两个点到 的距离为1, 错,选: .【点评】欧拉线与圆的综合题。通过几何构造分析,关键在动态距离与圆位置关系的讨论。 部分
《广东省广州市2025年普通高中毕业班综合测试(二)(广州二模)数学参考答案》由会员yanj****uan分享,可在线阅读,更多相关《广东省广州市2025年普通高中毕业班综合测试(二)(广州二模)数学参考答案》请在金锄头文库上搜索。