
5道微分方程计算练习题及答案B6
4页5道微分方程计算练习题及答案二阶常微分方程63y+85y=0的通解主要内容:本文通过一阶微分方程分离变量法、一阶齐次微分方程和二阶常系数微分方程通解计算,介绍二阶常微分方程63y+85y=0通解的计算步骤。主要步骤:.分离变量法由63y=-85y有:63d(y)=-85ydx=-85dx,两边同时积分有:63=-85dx,即:63d(lny)=-85dx,63lny=-85x+C00,对方程变形有:=e=C01e,再次积分可有:dy=C01,即:y=-C01*=C1e+C2。.一阶齐次微分方程求解因为63 (y)+85y=0,即:(y)+y=0,按照一阶齐次微分方程公式有:y=e*(+C0),进一步化简有:y=C0e,继续对积分可有:dy=C0,即:y=-C0*=C1e+C2。.二阶常系数微分方程求解该微分方程的特征方程为63r2+85r=0,即:r(63r+85)=0,所以r1=-,r2=0。此时二阶常系数微分方程的通解为:y=C1er1x+C2er2x=C1e+C2。
《5道微分方程计算练习题及答案B6》由会员wangw****2006分享,可在线阅读,更多相关《5道微分方程计算练习题及答案B6》请在金锄头文库上搜索。
点击阅读更多内容