电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

水弹性分析关于柔性的浮动互连结构毕业论文外文翻译

11页
  • 卖家[上传人]:壹****1
  • 文档编号:500107421
  • 上传时间:2023-12-22
  • 文档格式:DOC
  • 文档大小:372.50KB
  • / 11 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1、中文3040字出处:Ocean engineering, 2007, 34(11): 1516-1531外文Hydroelastic analysis of flexible floating interconnected structuresThree-dimensional hydroelasticity theory is used to predict the hydroelastic response of flexible floating interconnected structures. The theory is extended to take into account hinge rigid modes, which are calculated from a numerical analysis of the structure based on the finite element method. The modules and connectors are all considered to be flexible, with variable trans

      2、lational and rotational connector stiffness. As a special case, the response of a two-module interconnected structure with very high connector stiffness is found to compare well to experimental results for an otherwise equivalent continuous structure. This model is used to study the general characteristics of hydroelastic response in flexible floating interconnected structures, including their displacement and bending moments under various conditions. The effects of connector and module stiffnes

      3、s on the hydroelastic response are also studied, to provide information regarding the optimal design of such structures.Very large floating structures (VLFS) can be used for a variety of purposes, such as airports, bridges, storage facilities, emergency bases, and terminals. A key feature of these flexible structures is the coupling between their deformation and the fluid field. A variety of VLFS hull designs have emerged, including monolithic hulls, semisubmersible hulls, and hulls composed of

      4、many interconnected flexible modules.Various theories have been developed in order to predict the hydroelastic response of continuous flexible structures. For simple spatial models such as beams and plates, one-, two- and three-dimensional hydroelasticity theories have been developed. Many variations of these theories have been adopted using both analytical formulations (Sahoo et al., 2000; Sun et al., 2002; Ohkusu, 1998) and numerical methods (Wu et al., 1995; Kim and Ertekin, 1998; Ertekin and

      5、 Kim, 1999; Eatock Taylor and Ohkusu, 2000; Eatock Taylor, 2003; Cui et al., 2007). Specific hydrodynamic formulations based on the modal representation of structural behaviour, traditional three-dimensional seakeeping theory, and linear potential theory have been developed to predict the response of both beam-like structures (Bishop and Price, 1979) and those of arbitrary shape (Wu, 1984), through application of two-dimensional strip theory and the three-dimensional Greens function method, resp

      6、ectively. Other hydroelastic formulations also exist based upon two-dimensional (Wu and Moan, 1996; Xia et al., 1998) and three-dimensional nonlinear theory (Chen et al., 2003a). Finally, several hybrid methods ofhydroelastic analysis for the single module problem have also been developed (Hamamoto, 1998; Seto and Ochi, 1998; Kashiwagi, 1998; Hermans, 1998). To predict the hydroelastic response of interconnected multi-module structures, multi-body hydrodynamic interaction theory is usually adopt

      7、ed. In this theory, both modules and connectors may be modelled as either rigid or flexible. There are, therefore, four types of model: Rigid Module and Rigid Connector (RMRC), Rigid Module and Flexible Connector (RMFC), Flexible Module and Rigid Connector (FMRC) and Flexible Module and Flexible Connector (FMFC). By adopting two-dimensional linear strip theory, ignoring the hydrodynamic interaction between modules, and using a simplified beam model with varying shear and flexural rigidities, Che

      8、 et al. (1992) analysed the hydroelastic response of a 5-module VLFS. Che et al. (1994) later extended this theory by representing the structure with a three-dimensional finite element model rather than as a beam. Various three-dimensional methods (in both hydrodynamics and structural analysis) have been developed using source distribution methods to analyse RMFC models (Wang et al., 1991; Riggs and Ertekin,1993; Riggs et al., 1999; Cui et al., 2007). These formulations account for the hydrodyna

      9、mic interactions between each module by considering the radiation conditions corresponding to the motion of each module in one of its six rigid modes, while keeping the other modules fixed. By employing the composite singularity distribution method and three-dimensional hydroelasticity theory, Wu et al. (1993) analysed the hydroelastic response of a 5-module VLFS with FMFC. Riggs et al. (2000) compared the wave-induced response of an interconnected VLFS under the RMFC and FMFC (FEA) models.They found that the effect of module elasticity in the FMFC model could be reproduced in a RMFC model by changing the stiffness of the RMFC connectors to match the natural frequencies and mode shapes of the two models.The methods considered so far deal with modules joined by connectors at both deck and bottom levels, so that there is no hinge modes existed, or all the modules are considered to be rigid. In a structure composed of serially and longitudinally connected barges, Newman

      《水弹性分析关于柔性的浮动互连结构毕业论文外文翻译》由会员壹****1分享,可在线阅读,更多相关《水弹性分析关于柔性的浮动互连结构毕业论文外文翻译》请在金锄头文库上搜索。

      点击阅读更多内容
    最新标签
    监控施工 信息化课堂中的合作学习结业作业七年级语文 发车时刻表 长途客运 入党志愿书填写模板精品 庆祝建党101周年多体裁诗歌朗诵素材汇编10篇唯一微庆祝 智能家居系统本科论文 心得感悟 雁楠中学 20230513224122 2022 公安主题党日 部编版四年级第三单元综合性学习课件 机关事务中心2022年全面依法治区工作总结及来年工作安排 入党积极分子自我推荐 世界水日ppt 关于构建更高水平的全民健身公共服务体系的意见 空气单元分析 哈里德课件 2022年乡村振兴驻村工作计划 空气教材分析 五年级下册科学教材分析 退役军人事务局季度工作总结 集装箱房合同 2021年财务报表 2022年继续教育公需课 2022年公需课 2022年日历每月一张 名词性从句在写作中的应用 局域网技术与局域网组建 施工网格 薪资体系 运维实施方案 硫酸安全技术 柔韧训练 既有居住建筑节能改造技术规程 建筑工地疫情防控 大型工程技术风险 磷酸二氢钾 2022年小学三年级语文下册教学总结例文 少儿美术-小花 2022年环保倡议书模板六篇 2022年监理辞职报告精选 2022年畅想未来记叙文精品 企业信息化建设与管理课程实验指导书范本 草房子读后感-第1篇 小数乘整数教学PPT课件人教版五年级数学上册 2022年教师个人工作计划范本-工作计划 国学小名士经典诵读电视大赛观后感诵读经典传承美德 医疗质量管理制度 2
     
    收藏店铺
    关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
    手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
    ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.