电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

后摩尔定律时代谁来主导芯片产业

4页
  • 卖家[上传人]:M****1
  • 文档编号:488780501
  • 上传时间:2022-11-18
  • 文档格式:DOCX
  • 文档大小:15.62KB
  • / 4 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1、后摩尔定律时代谁来主导芯片产业 在摩尔定律引领下的集成电路生产正在逼近物理定律的极限,芯片产业迫切需要替代技术。 目前尚处于研发状态中的各种新的芯片生产技术—分子计算、生物计算、量子计算、石 墨烯等技术中,谁将最终胜出?1965年,芯片产业的先驱戈登-摩尔(GordonMoore)发布了著名的摩尔定律:集成电路芯片 的复杂程度每过两年就会增加一倍。此后的几十年来,在这一定律的指引下,芯片制造工艺 的进步让芯片的晶体管尺寸得以不断缩小,从而使电气信号传输的距离更短,处理速度也更 快。对电子行业和消费者来说,摩尔定律意味着计算机类设备的尺寸将变得更小、速度更快、成 本更低。当然,这一切都要归功于半导体设计和制造方面坚持不懈的创新,35年来芯片在一 如既往地遵循这条轨迹。不过,工程师们也清楚,摩尔定律终究会在某个时候陷入绝境,因 为晶体管会变得只有几十个原子那么厚。这么小的尺寸正在逼近基本的物理定律的极限,而 实际上在逼近这个极限前就已经出现了两个很实际的问题:想把这么小的晶体管如此近地放 在一起,又要获得高产量(质量合格的芯片,而不是有瑕疵的芯片),成本会变得过于高昂; 而另一

      2、方面,一大堆晶体管进行开关操作时产生的热量会急剧攀升,足以烧毁元件本身。的确,这些问题几年前已经开始显现了。如今普通的个人电脑普遍采用“双核” 芯片& mdash ;& mdash;意味着使用两个小处理器,而不是一个处理器,这种设计的一个非常主 要的原因是,如果把所需数量的晶体管封装到一块芯片上并解决散热问题已变得困难重重。 芯片设计人员改而选择并排放置两块或更多块芯片,并对它们进行编程,以便并行处理信息。 摩尔定律最终可能会寿终正寝。如果真是那样的话,工程师们该如何继续制造出功能更强大 的芯片呢?改用新的架构或者研发可以逐个原子组装的纳米材料是研究人员正在研究的两种 办法。另外一些办法还包括量子计算和生物计算。下面会介绍一些技术,其中一些目前还处 于原型阶段。在接下来的20年里,这些技术有望让计算机继续遵循“尺寸更小、速度 更快、成本更低”这条道路向前发展。散热:研发新型散热器 由于一块芯片上的晶体管数量多达10亿只,消除晶体管在开关操作时生成的热量是一大挑战 虽然个人电脑里面有空间容纳风扇,但即便如此,每块芯片约100瓦的功耗却已是其

      3、散热极 限。为此研究人员开始设计一些新颖的替代技术。MacBookAir笔记本电脑采用由热传导铝制 成的精美外壳,并充当散热器。在苹果PowerMacG5个人电脑中,液体(水)从处理器芯片下 面的微通道流过以散热。不过,液体和电子器件却是一个不可靠的组合,像智能手机这些比较小的便携式装置根本没 有地方来容纳管道或风扇。英特尔的一支研究小组已把一层碲化铋超晶格薄膜做到芯片封装 体中。温差电材料把温度梯度转变成电信号,实际上对芯片本身起到了散热效果。初创公司 Ventiva 正在普渡大学研究工作的基础上,研制一种没有活动部件的小型固态 “风扇”,它利用电晕风效应(CoronaWindEffect)来生成一股微风—安静 的家用空气净化器采用了这种技术。稍稍凹下去的格栅有带电导线,可以生成微型等离子体。 这种气体状混合物里面的离子促使空气分子从带电导线转移到相邻极板,生成一股风。这种 风扇生成的气流比普通的机械风扇大,而尺寸要小得多。其他创新公司则在制造斯特令发动 机风扇(不过有些笨重),其特点是能生成风,又不用耗电,芯片冷热部位之间的温差是驱动 这些风扇的

      4、动力。架构:多核成为主流 更小的晶体管能够更快地进行开关操作(表示0和1),因而芯片速度更快。但是当芯片达到 散热极限后,时钟频率(芯片在一秒内可以处理的指令数量)也就无法再提高,保持在三四 兆赫兹。人们希望在散热和速度极限范围内获得更高的性能,于是设计师们把两个处理器或 核心放在同一块芯片上。虽然每个核心的运行速度与之前的处理器一样快,但由于两个核心 并行工作,所以在特定的时间内能够处理更多数据,耗电量比较低,散热也比较少。现在最 新的个人电脑采用四核处理器,比如英特尔i7和AMDPhenomX4。多核给软件带来了挑战。世界上功能最强大的超级计算机里面有数千个核,而在普通的消费 类产品中,即便只是想极高效地利用几个核心,都需要新的编程技术来划分数据和处理,并 且协调任务。上世纪八九十年代,研究人员已经为超级计算机解决好了并行编程的基础性工 作,而现在的难题是开发出用来编写消费类应用软件的语言和工具。据悉,微软研究部门已 发布了 F#编程语言。瑞典爱立信公司推出的一门早期语言Erlang催生出了几门更新的语言, 包括Clojure和Scala。伊利诺斯大学等院校也在为多核芯片研发并行编

      5、程技术。如果这些方法能得到完善,桌面和移动设备就可以有几十个或更多个并行处理器,这些处理 器单个所含的晶体管数量都少于现有芯片,但作为一个整体,运行速度更快。更薄的材料:纳米管和自组装 近十年来,业界权威将纳米技术作为解决医学、能源以及集成电路等行业各种挑战的候选方 案。一些拥护者更是认为,制造芯片的半导体行业实际上已经形成了一套纳米技术学科,专 门研发、生产越来越小的晶体管。不过更现实的希望是,纳米技术让工程师们可以制造出特制分子(DesignerMolecule)。比如, 用碳纳米管组装而成的晶体管可以做得极小。IBM公司的工程师们已制造出用碳纳米管而不 是硅作为传导衬底的传统互补金属氧化物半导体(CMOS )电路。来自该研究小组的JoergAppenzeller 现任职 排列分子、甚至排列原子很棘手,特别是由于需要在芯片生产期间对它们进行大批量组装。一种解决方案是使用能自组装的分子:把这些分子混合起来,然后让它们受到热、光或离心 力的作用,让它们自己排列成所需的图案。IBM 已研究出如何利用化学键结合的聚合物来制造内存电路。分子被放到硅晶片表面上经加 热后延展形成蜂巢结构,蜂巢孔

      6、的直径只有20 纳米。然后,将图案蚀刻到硅片上,形成这种 尺寸的内存芯片。速度更快的晶体管:超薄石墨烯 不断缩小晶体管尺寸的目的是为了缩小电气信号在芯片里面传输的距离,从而加快处理信息 的速度。但一种特别的纳米材料—石墨烯(Graphene)有望带来更快的速度,这归功于 其天生的结构。处理信息的逻辑芯片大多使用由CMOS技术做成的场效应晶体管。晶体管就好比是一块狭长、 长方形的多层蛋糕,最上面一层是铝(或者最近常用的多晶硅),中间一层是绝缘氧化物,最 下面一层是半导体硅。石墨烯(最近剥离出来的一种碳分子)是一片在同一平面重复的六边 形,外观像六角形铁丝网,但厚度只有一个原子层厚。石墨烯片彼此堆叠起来,形成矿物质 石墨,也就是我们所熟悉的那种铅笔“芯”。纯晶体形式的石墨烯在室温下传导 电子的速度超过其他任何材料,比场效应晶体管快多了。由于散射或与晶格中的原子发生碰 撞,电荷载体损失的能量非常少,所以产生的废热比较少。科学家们直到2004年才剥离出石 墨烯这种材料,因此这方面的研究工作仍处于早期阶段,但研究人员对于研制出宽度只有10 纳米、高度只有一个原

      7、子大小的石墨烯晶体管满怀信心。众多电路也许有望蚀刻到一块小小 的石墨烯片上。大小:采用交叉线寻求突破 如今可以制造出来的尺寸最小的商用晶体管只有32纳米宽,相当于96个硅原子的总宽度。 业界普遍认为,想利用几十年来不断完善的光刻技术制造出尺寸小于22纳米的元件极其困难 但是,有一种方法可以制造出尺寸相似的电路元件,又能提供更强大的计算功能,那就是交 叉线设计(CrossbarDesign)。交叉线设计方法是在一个平面上有一组并行纳米线,同第二组 与该平面成直角的纳米线交叉(相当于两条互相垂直的公路),而不是全在一个平面制造晶体 管(就像把多辆汽车塞到一条堵塞公路上的几条车道)。两组纳米线线之间有一个分子厚的缓 冲层。这两组线之间存在的许多交叉点名为忆阻器(Memristor),其工作方式类似开关,可 以像晶体管那样表示1 和 0(两位数,即比特)。不过忆阻器还能存储信息。这些功能结合起 来,就能执行诸多计算任务。实际上,一个忆阻器就能完成10 到 15 个晶体管的工作量。 惠普实验室已利用30 纳米宽的钛线和铂线制造出交叉线设计的原型,而采用的材料和工艺类 似于目前半导体行业所用的材料

      8、和工艺。惠普公司的研究人员认为,每条线的宽度最小能做 到8 纳米。另外也有几个研究小组在研究用硅、钛和硫化银做成交叉线。 光子计算:与光一样快替代硅芯片的全新技术仍然还处于研发初期,真正的商用产品可能十年后才会问世,但摩尔 定律到那时可能走到头了,所以研究人员不得不研发新的解决办法—光学计算就是其中 之一。在光学计算中,载送信息的不是电子,而是光子。光子的载送速度要快得多,达到了光速; 不过,要控制光也困难得多。通信线路中的光缆沿线处的光学开关其制造技术取得了进展, 这有助于光学计算的研究。出人意料的是,最重要的研究其目的却是,研制出介于多核芯片 上传统处理器之间的光学互连器件。并行处理信息的处理器核心之间要来回传送大量数据, 所以连接处理器核心的引线会成为瓶颈,而光学互连器件有望改善数据传送。惠普实验室的 研究人员正在评估可将传送的信息量增加两个数量级的设计。其他机构组织正在研制光学互连器件来取代速度较慢的铜线,如今人们用铜线把处理器芯片 与计算机里面的其他部件(如内存芯片和DVD驱动器)连起来。英特尔和加州大学圣巴巴拉 分校的工程师们采用常规的半导体制造工艺,利用硅和磷

      9、酸铟研制出了光学& ldquo;数据管道 &rdqu。;。不过,纯粹的光学计算芯片的出现还需要在技术层面取得一些根本性突破。 分子计算:用分子做成电路在分子计算中,代表1和0的是分子,而不是晶体管。当分子是生物分子时(如DNA),这类 计算称为分子计算(参阅下文的“生物计算:能存活的芯片”)。为了区分,工程 师可能会将非生物分子计算称为分子逻辑或分子电子学。典型的晶体管有三个端子(可以想象成字母Y):源极、栅极和漏极。对栅极(Y的下半部) 施加电压后,就会引起电子在源极和漏极之间移动,形成1 或 0。从理论上来说,树枝状分 子会引发信号以类似的方式移动。十年前,耶鲁大学和赖斯大学的研究人员利用苯作为一种 构建材料,研制出了分子开关。分子可能很小,所以用分子做成的电路可能比用硅做成的电路小得多。不过,一个现实的难 题是必须找到制造复杂电路的方法。研究人员们认为,自组装也许是一种解决办法。2009年10 月,宾夕法尼亚大学的一个科研小组单单利用促使自组装的化学反应,就把锌和结晶硫化 镉转变成金属半导体超晶格电路。量子计算:表达出更多的信息 用一个个原子、电子甚至光子做成的电路元件将是尺寸最小的元件。在这么小的尺寸范围内, 元件相互之间的联系由量子力学(即解释原子行为的一套定律)管理。量子计算机可能拥有 异常惊人的密度和速度,但实际制造量子计算机及管理随之出现的量子效应却困难重重。原子和电子具有能在不同状态下存在的特性,能够组成量子比特(Qubit)。研究处理量子比 特的几种方法正在试验中。一种名为自旋电子(Spintronics)的方法使用电子,电子的磁矩 会在两种旋转方向中选择其一。就好比一只球往一个方向或另一方向旋转(分别表示1或0)。 不过,两个状态还能共存于一个电子中,形成一种独特的量子状态,名为 0 和 1 的叠加 (Superposition)。在叠加状态下,一连串电子可以表示比一串只有普通比特状态的硅晶体 管多得多的信息。加州大学圣巴巴拉分校的科学家们已通过用蚀刻到金刚石上的空腔来俘获 电子,做成了许多不同的逻辑栅极。在马里兰大学和美国国家标准技术研究所研究的另一种方法中,一串离子悬浮在带电板之间, 而激光可以快速转动每个

      《后摩尔定律时代谁来主导芯片产业》由会员M****1分享,可在线阅读,更多相关《后摩尔定律时代谁来主导芯片产业》请在金锄头文库上搜索。

      点击阅读更多内容
    最新标签
    监控施工 信息化课堂中的合作学习结业作业七年级语文 发车时刻表 长途客运 入党志愿书填写模板精品 庆祝建党101周年多体裁诗歌朗诵素材汇编10篇唯一微庆祝 智能家居系统本科论文 心得感悟 雁楠中学 20230513224122 2022 公安主题党日 部编版四年级第三单元综合性学习课件 机关事务中心2022年全面依法治区工作总结及来年工作安排 入党积极分子自我推荐 世界水日ppt 关于构建更高水平的全民健身公共服务体系的意见 空气单元分析 哈里德课件 2022年乡村振兴驻村工作计划 空气教材分析 五年级下册科学教材分析 退役军人事务局季度工作总结 集装箱房合同 2021年财务报表 2022年继续教育公需课 2022年公需课 2022年日历每月一张 名词性从句在写作中的应用 局域网技术与局域网组建 施工网格 薪资体系 运维实施方案 硫酸安全技术 柔韧训练 既有居住建筑节能改造技术规程 建筑工地疫情防控 大型工程技术风险 磷酸二氢钾 2022年小学三年级语文下册教学总结例文 少儿美术-小花 2022年环保倡议书模板六篇 2022年监理辞职报告精选 2022年畅想未来记叙文精品 企业信息化建设与管理课程实验指导书范本 草房子读后感-第1篇 小数乘整数教学PPT课件人教版五年级数学上册 2022年教师个人工作计划范本-工作计划 国学小名士经典诵读电视大赛观后感诵读经典传承美德 医疗质量管理制度 2
    关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
    手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
    ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.