
2023学年北京师范大附属实验中学数学八年级第一学期期末达标检测模拟试题含解析.doc
20页2023学年八上数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题(每题4分,共48分)1.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是( )A.18° B.24° C.30° D.36°2.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E段AD上,∠EBC=45°,则∠ACE等于( )A.15° B.30° C.45° D.60°3.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10 B.11 C.12 D.134.下列命题是假命题的是( )A.角平分线上的点到角两边的距离相等 B.直角三角形的两个说角互余C.同旁内角互补 D.一个角等于60°的等腰三角形是等边三角形5.如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是( )A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F6.若是一个完全平方式,则的值应是 ( )A.2 B.-2 C.4或-4 D.2或-27.某化肥厂计划每天生产化肥x吨,由于采用了新技术,每天多生产化 肥3吨,因此实际生产150吨化肥与原计划生产化肥120吨化肥的时间相等,则下列所列方程正确的是( )A. B.C. D.8.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是[来( )A.SAS B.ASA C.AAS D.SSS9.如图,把纸片沿折叠,当点落在四边形内部时,则与之间有一种数量关系始终保持不变,试着找一找这个规律你发现的规律是( )A. B.C. D.10.关于x的不等式(m+1)x>m+1的解集为x<1,那么m的取值范围是( )A.m<﹣1 B.m>﹣1 C.m>0 D.m<011.在下列各数中,无理数是( )A. B. C. D.12.如图,AB=AC,AE=AD,要使△ACD≌△ABE,需要补充的一个条件是( ) A.∠B=∠C B.∠D=∠E C.∠BAC=∠EAD D.∠B=∠E二、填空题(每题4分,共24分)13.如图,把△ABC沿EF对折,折叠后的图形如图所示.若∠A=60°,∠1=96°,则∠2的度数为_____.14.如图,在平面直角坐标系中,直线与x轴、y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD,则D点坐标是_______;在y轴上有一个动点M,当的周长值最小时,则这个最小值是_______.15.如果一个多边形的内角和为1260º,那么从这个多边形的一个顶点引对角线,可以把这个多边形分成_______________个三角形.16.2015年10月.我国本土科学家屠呦呦荣获诺贝尔生理学或医学奖,她创制新型抗疟药青蒿素为人类作出了突出贡献.疟原虫早期期滋养体的直径约为0.00000122米,这个数字用科学记数法表示为______米.17.已知点P(3,a)关于y轴的对称点为(b,2),则a+b=_______.18.分解因式:(x2+4)2﹣16x2=_____.三、解答题(共78分)19.(8分)如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含ab的式子表示)(2)若,求图2中的空白正方形的面积.(3)观察图2,用等式表示出,ab和的数量关系.20.(8分)如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.过点F作FN垂直于BA的延长线于点N.(1)求∠EAF的度数;(2)如图2,连接FC交BD于M,交AD于N.猜想BD,AF,DM三条线段的等量关系,并证明.21.(8分)在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?22.(10分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?23.(10分)(1)计算:(2)解方程组:24.(10分)(阅读理解)利用完全平方公式,可以将多项式变形为的形式,我们把这样的变形方法叫做多项式的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:(问题解决)根据以上材料,解答下列问题:(1)用多项式的配方法将多项式化成的形式;(2)用多项式的配方法及平方差公式对多项式进行分解因式;(3)求证:不论,取任何实数,多项式的值总为正数.25.(12分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣1)2=0,∴(m﹣n)2=0,(n﹣1)2=0,∴n=1,m=1.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;(2)已知a﹣b=1,ab+c2﹣6c+13=0,求a+b+c的值.26.在平面直角坐标系中,一次函数yx+4的图象与x轴和y轴分别交于A、B两点.动点P从点A出发,段AO上以每秒1个单位长度的速度向点O作匀速运动,到达点O即停止运动.其中A、Q两点关于点P对称,以线段PQ为边向上作正方形PQMN.设运动时间为秒.如图①.(1)当t=2秒时,OQ的长度为 ;(2)设MN、PN分别与直线yx+4交于点C、D,求证:MC=NC;(3)在运动过程中,设正方形PQMN的对角线交于点E,MP与QD交于点F,如图2,求OF+EN的最小值.参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:先根据等腰三角形的性质求得∠C的度数,再根据三角形的内角和定理求解即可.∵AB=AC,∠A=36°∴∠C=72°∵BD是AC边上的高∴∠DBC=180°-90°-72°=18°故选A.考点:等腰三角形的性质,三角形的内角和定理点评:三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.2、A【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【详解】∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°,故选A.【点睛】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.3、C【分析】根据多边形的内角和定理:(n−2)×180°求解即可.【详解】解:由题意可得:180°•(n﹣2)=150°•n,解得n=1.故多边形是1边形.故选C.【点睛】主要考查了多边形的内角和定理.n边形的内角和为:(n−2)×180°.此类题型直接根据内角和公式计算可得.4、C【分析】利用角平分线的性质、直角三角形的性质、平行线的性质及等边三角形的判定分别判断后即可确定正确的答案.【详解】解:A、角平分线上的点到角两边的距离相等,正确;B、直角三角形的两锐角互余,正确;C、两直线平行,同旁内角互补,故原命题错误;D、一个角等于60°的等腰三角形是等边三角形,正确,故选:C.【点睛】考查了角平分线的性质、直角三角形的性质及等边三角形的判定,属于基础性知识,难度不大.5、C【分析】根据三角形全等的判定定理等知识点进行选择判断.【详解】A、添加AC=DF,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;B、添加∠B=∠E,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;C、添加BC=EF,不能判定△ABC≌△DEF,故此选项符合题意;D、添加∠C=∠F,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;故选C.【点睛】本题主要考查你对三角形全等的判定等考点的理解.6、C【解析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2的积的2倍,故-m=±1,m=±1.【详解】∵(x±2)2=x2±1x+1=x2-mx+1,∴m=±1.故选:C.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.7、C【分析】表示出原计划和实际的生产时间,根据时间相等,可列出方程.【详解】解:设计划每天生产化肥x吨,列方程得=.故选:C.【点睛】本题考查分式方程的应用,关键是掌握工程问题的数量关系:工作量=工作时间×工作效率,表示出工作时间.8、D【解析】试题解析:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选D.9、A【分析】画出折叠之前的部分,连接,由折叠的性质可知,根据三角形外角的性质可得∠1=,∠2=,然后将两式相加即可得出结论.【详解】解:画出折叠之前的部分,如下图所示,连接由折叠的性质可知∵∠1是的外角,∠2是的外角∴∠1=,∠2=∴∠1+∠2=+===故选A.【点睛】此题考查的是三角形与折叠问题,掌握折叠的性质和三角形外角的性质是解决此题的关键.10、A【解析】本题是关于x的不等式,不等式两边同时除以(m+1)即可求出不等式的解集,不等号发生改变,说明m+1<0,即可求出m的取值范围.【详解】∵不等式(m+1)x>m+1的解集为x<1,∴m+1<0,∴m<−1,故选:A.【点睛】考查解一元一次不等式,熟练掌握不等式的3个基本性质是解题的关键.11、B【分析】根据无理数的定义进行判断即可.【详解】解:∵=2,=2,∴,,都是有理数,3π是无理数,故选B.【点睛】本题主要考查无理数的定义,无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.12、C【解析】解。
