
安徽阜阳市2024年毕业升学考试模拟卷数学卷含解析.doc
19页安徽阜阳市2024年毕业升学考试模拟卷数学卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为( )A.1:3 B.1:4 C.1:5 D.1:62.如图是某几何体的三视图及相关数据,则该几何体的全面积是( )A.15π B.24π C.20π D.10π3.下列四个图案中,不是轴对称图案的是( )A. B. C. D.4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( )A.25和30 B.25和29 C.28和30 D.28和295.下列各数中,为无理数的是( )A. B. C. D.6.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )A. B. C. D.7.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )A. B. C. D.8.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是( )A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b9.如图,函数y1=x3与y2=在同一坐标系中的图象如图所示,则当y1<y2时( )A.﹣1<x<l B.0<x<1或x<﹣1C.﹣1<x<I且x≠0 D.﹣1<x<0或x>110.在以下四个图案中,是轴对称图形的是( )A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.12.如图,在平行四边形ABCD中,过对角线AC与BD的交点O作AC的垂线交于点E,连接CE,若AB=4,BC=6,则△CDE的周长是______.13.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为_____.14.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_____.15.将直线y=x沿y轴向上平移2个单位长度后,所得直线的函数表达式为_________,这两条直线间的距离为_____.16.抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为_____.17.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______度.三、解答题(共7小题,满分69分)18.(10分)已知关于x的方程.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.19.(5分)如图,在等边中,,点D是线段BC上的一动点,连接AD,过点D作,垂足为D,交射线AC与点设BD为xcm,CE为ycm.小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整:通过取点、画图、测量,得到了x与y的几组值,如下表:012345___00说明:补全表格上相关数值保留一位小数建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为_____cm.20.(8分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.求二次函数y=ax2+2x+c的表达式;连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.21.(10分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.22.(10分)问题提出(1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为 ;问题探究(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.23.(12分)先化简,再求值:﹣÷,其中a=1.24.(14分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.求甲组加工零件的数量y与时间x之间的函数关系式.求乙组加工零件总量a的值.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.【题目详解】解:连接CE,∵AE∥BC,E为AD中点,∴ .∴△FEC面积是△AEF面积的2倍.设△AEF面积为x,则△AEC面积为3x,∵E为AD中点,∴△DEC面积=△AEC面积=3x.∴四边形FCDE面积为1x,所以S△AFE:S四边形FCDE为1:1.故选:C.【题目点拨】本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.2、B【解题分析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.3、B【解题分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【题目详解】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【题目点拨】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.4、D【解题分析】【分析】根据中位数和众数的定义进行求解即可得答案.【题目详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【题目点拨】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.5、D【解题分析】A.=2,是有理数;B.=2,是有理数;C.,是有理数;D.,是无理数,故选D.6、B【解题分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【题目详解】综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.故选:B.【题目点拨】此题考查由三视图判断几何体,解题关键在于识别图形7、D【解题分析】试题分析:俯视图是从上面看到的图形.从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D.考点:简单组合体的三视图8、C【解题分析】∵∠C=90°,∴cosA=,sinA= ,tanA=,cotA=,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有选项C正确,故选C.【题目点拨】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.9、B【解题分析】根据图象知,两个函数的图象的交点是(1,1),(-1,-1).由图象可以直接写出当y1












