
辽宁省抚顺市六校2021-2022学年数学高一第二学期期末监测试题含解析.doc
17页2021-2022学年高一下数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角所对的边分别为,已知,则最大角的余弦值是( )A. B. C. D.2.如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是( )A.这15天日平均温度的极差为B.连续三天日平均温度的方差最大的是7日,8日,9日三天C.由折线图能预测16日温度要低于D.由折线图能预测本月温度小于的天数少于温度大于的天数3.已知,表示两条不同的直线,表示平面,则下列说法正确的是( )A.若,,则 B.若,,则C.若,,则 D.若,,则4.已知,且,则( )A. B. C. D.25.两个正实数满足,则满足,恒成立的取值范围( )A. B. C. D.6.角的终边在直线上,则( )A. B. C. D.7.已知向量,,则向量在向量方向上的投影为( )A. B. C.-1 D.18.用长为4,宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为( )A.8 B. C. D.9.若直线的倾斜角为,则的值为( )A. B. C. D.10.已知平面向量,,若,则实数( )A.-2 B.-1 C. D.2二、填空题:本大题共6小题,每小题5分,共30分。
11.已知,若直线与直线垂直,则的最小值为_____12.正方形和内接于同一个直角三角形ABC中,如图所示,设,若两正方形面积分别为=441,=440,则=______13.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为 升;14.设x、y满足约束条件,则的取值范围是______.15.若无穷等比数列的各项和等于,则的取值范围是_____.16.已知函数,为的反函数,则_______(用反三角形式表示).三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤17.在中,角、、的对边分别为、、,为的外接圆半径.(1)若,,,求;(2)在中,若为钝角,求证:;(3)给定三个正实数、、,其中,问:、、满足怎样的关系时,以、为边长,为外接圆半径的不存在,存在一个或存在两个(全等的三角形算作同一个)?在存在的情兄下,用、、表示.18.设数列的首项,为常数,且(1)判断数列是否为等比数列,请说明理由;(2)是数列的前项的和,若是递增数列,求的取值范围.19.已知.(1)求的值;(2)若为第二象限角,且角终边在上,求的值.20.已知函数,的部分图像如图所示,点,,都在的图象上.(1)求的解析式;(2)当时,恒成立,求的取值范围.21.已知平面向量,且(1)若是与共线的单位向量,求的坐标;(2)若,且,设向量与的夹角为,求.参考答案一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由边之间的比例关系,设出三边长,利用余弦定理可求.【详解】因为,所以c边所对角最大,设,由余弦定理得,故选B.【点睛】本题考查余弦定理,计算求解能力,属于基本题.2、B【解析】利用折线图的性质,结合各选项进行判断,即可得解.【详解】由某地某月1日至15日的日平均温度变化的折线图,得:在中,这15天日平均温度的极差为:,故错误; 在中,连续三天日平均温度的方差最大的是7日,8日,9日三天,故正确; 在中,由折线图无法预测16日温度要是否低于,故错误; 在中,由折线图无法预测本月温度小于的天数是否少于温度大于的天数,故错误. 故选.【点睛】本题考查命题真假的判断,考查折线图的性质等基础知识,考查运算求解能力、数据处理能力,考查数形结合思想,是基础题.3、A【解析】根据线面垂直的判定与性质、线面平行的判定与性质依次判断各个选项可得结果.【详解】选项:由线面垂直的性质定理可知正确;选项:由线面垂直判定定理知,需垂直于内两条相交直线才能说明,错误;选项:若,则平行关系不成立,错误;选项:的位置关系可能是平行或异面,错误.故选:【点睛】本题考查空间中线面平行与垂直相关命题的辨析,关键是能够熟练掌握空间中直线与平面位置关系的判定与性质定理.4、A【解析】由平方关系得出的值,最后由商数关系求解即可.【详解】,故选:A【点睛】本题主要考查了利用平方关系以及商数关系化简求值,属于基础题.5、B【解析】由基本不等式和“1”的代换,可得的最小值,再由不等式恒成立思想可得小于等于的最小值,解不等式即得m的范围。
详解】由,,可得,当且仅当上式取得等号,若恒成立,则有,解得.故选:B【点睛】本题考查利用基本不等式求恒成立问题中的参数取值范围,是常考题型6、C【解析】先由直线的斜率得出,再利用诱导公式将分式化为弦的一次分式齐次式,并在分子分母中同时除以,利用弦化切的思想求出所求代数式的值.【详解】角的终边在直线上,,则,故选C.【点睛】本题考查诱导公式化简求值,考查弦化切思想的应用,弦化切一般适用于以下两个方面:(1)分式为角弦的次分式齐次式,在分子分母中同时除以,可以弦化切;(2)代数式为角的二次整式,先除以,转化为角弦的二次分式其次式,然后在分子分母中同时除以,可以实现弦化切.7、A【解析】根据投影的定义和向量的数量积求解即可.【详解】解:∵,,∴向量在向量方向上的投影,故选:A.【点睛】本题主要考查向量的数量积的定义及其坐标运算,属于基础题.8、B【解析】分别讨论当圆柱的高为4时,当圆柱的高为2时,求出圆柱轴截面面积即可得解.【详解】解:当圆柱的高为4时,设圆柱的底面半径为,则,则,则圆柱轴截面面积为, 当圆柱的高为2时,设圆柱的底面半径为,则,则,则圆柱轴截面面积为, 综上所述,圆柱的轴截面面积为,故选:B.【点睛】本题考查了圆柱轴截面面积的求法,属基础题.9、B【解析】根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值.【详解】由于直线的倾斜角为,所以,则故答案选B【点睛】本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键.10、A【解析】由题意,则,再由数量积的坐标表示公式即可得到关于的方程,解出它的值【详解】由,,则,即解得: 故选:A【点睛】本题考查数量积判断两个平面向量的垂直关系,向量的数量积坐标表示,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。
11、8【解析】两直线斜率存在且互相垂直,由斜率乘积为-1求得等式,把目标式子化成,运用基本不等式求得最小值.【详解】设直线的斜率为,,直线的斜率为,,两条直线垂直,,整理得:,,等号成立当且仅当,的最小值为.【点睛】利用“1”的代换,转化成可用基本不等式求最值,考查转化与化归的思想.12、【解析】首先根据在正方形S1和S2内,S1=441,S2=440,分别求出两个正方形的边长,然后分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式,求出sin2α的值即可.【详解】因为S1=441,S2=440,所以FD21,MQ=MN,因为AC=AF+FC2121,AC=AM+MCMNcosαcosα,所以:21cosα,整理,可得:(sinαcosα+1)=21(sinα+cosα),两边平方,可得110sin22α﹣sin2α﹣1=0,解得sin2α或sin2α(舍去),故sin2α.故答案为:.【点睛】本题主要考查了三角函数的求值问题,考查了正方形、直角三角形的性质,属于中档题,解答此题的关键是分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式.13、【解析】试题分析:由题意可知,解得,所以.考点:等差数列通项公式.14、【解析】由约束条件可得可行域,将问题转化为在轴截距取值范围的求解;通过直线平移可确定的最值点,代入点的坐标可求得最值,进而得到取值范围.【详解】由约束条件可得可行域如下图阴影部分所示:将的取值范围转化为在轴截距的取值范围问题由平移可知,当过图中两点时,在轴截距取得最大和最小值, ,的取值范围为故答案为:【点睛】本题考查线性规划中的取值范围问题的求解,关键是能够将问题转化成直线在轴截距的取值范围的求解问题,通过数形结合的方式可求得结果.15、.【解析】根据题意可知,,从而得出,再由,即可求出的取值范围.【详解】解:由题意可知,,且,,,,或,故的取值范围是,故答案为:.【点睛】本题主要考查等比数列的极限问题,解题时要熟练掌握无穷等比数列的极限和,属于基础题.16、【解析】先将转化为,,然后求出即可【详解】因为所以所以所以所以把与互换可得即所以故答案为:【点睛】本题考查的是反函数的求法,较简单三、解答题:本大题共5小题,共70分。
解答时应写出文字说明、证明过程或演算步骤17、(1);(2)见解析;(3)见解析.【解析】(1)利用正弦定理求出的值,然后利用余弦定理求出的值;(2)由余弦定理得出可得证;(3)分类讨论判断三角形的形状与两边、的关系,以及与直径的大小的比较,分类讨论即可.【详解】(1)由正弦定理得,所以,由余弦定理得,化简得.,解得;(2)由于为钝角,则,由于,,得证;(3)①当或时,所求不存在;②当且时,,所求有且只有一个,此时;③当时,都是锐角,,存在且只有一个,;④当时,所求存在两个,总是锐角,可以是钝角也可以是锐角,因此所求存在,当时,,,,,;当时,,,,,.【点睛】本题综合考查了三角形形状的判断,考查了解三角形、三角形的外接圆等知识,综合性较强,尤其是第三问需要根据、两边以及直径的大小关系确定三角形的形状,再在这种情况下求第三边的表达式,本解法主观性较强,难度较大.18、(1)是公比为的等比数列,理由见解析;(2)【解析】(1)由,当时,,即可得出结论.(2)由(1)可得:,可得,,可得,,即可得出.【详解】(1),则时,,时,为等比数列,公比为.(2)由(1)可得:,只需,()当为奇数时,恒成立,又单减,∴当为偶数时,恒成立,又单增,∴.【点睛】本题考查等比数列的定义通项公式与求和公式及其单。












