材料力学-梁的挠度.ppt
36页§7–1 概述概述§7–2 梁的挠曲线近似微分方程梁的挠曲线近似微分方程§7–3 积分法计算梁的位移积分法计算梁的位移§7–4 叠加法计算梁的叠加法计算梁的位移位移§7–5 梁的刚度校核梁的刚度校核目目 录录§7§7-1-1 概概 述述研究范围研究范围:等直梁在对称弯曲时位移的计算研究目的研究目的:①对梁作刚度校核; ②解超静定梁(为变形几何条件提供补充方程)1.1.挠度挠度:横截面形心沿垂直于轴线方向的线位移用v表示 与 f 同向为正,反之为负 2.2.转角转角:横截面绕其中性轴转动的角度用 表示,顺时针转动为正,反之为负 二、挠曲线:变形后,轴线变为光滑曲线,该曲线称为挠曲线二、挠曲线:变形后,轴线变为光滑曲线,该曲线称为挠曲线 其方程为:其方程为:v =f (x)三、转角与挠曲线的关系:三、转角与挠曲线的关系:一、度量梁变形的两个基本位移量一、度量梁变形的两个基本位移量小变形小变形PxvCq qC1f §7-2 梁的挠曲线近似微分方程梁的挠曲线近似微分方程一、挠曲线近似微分方程一、挠曲线近似微分方程式(2)就是挠曲线近似微分方程。
小变形小变形fxM>0fxM<0(1)对于等截面直梁,挠曲线近似微分方程可写成如下形式:1.1.微分方程的积分微分方程的积分2.2.位移边界条件位移边界条件PABCPD §7-3 积分法计算梁的位移积分法计算梁的位移讨论: ①适用于小变形情况下、线弹性材料、细长构件的平面弯曲 ②可应用于求解承受各种载荷的等截面或变截面梁的位移 ③积分常数由挠曲线变形的几何相容条件(边界条件、连续条 件)确定 ④优点:使用范围广,直接求出较精确;缺点:计算较繁 支点位移条件:支点位移条件: 连续条件连续条件: 光滑条件:光滑条件:[ [例例1] 1] 求下列各等截面直梁的弹性曲线、最大挠度及最大转角建立坐标系并写出弯矩方程写出微分方程并积分应用位移边界条件求积分常数解:解:PLxf写出弹性曲线方程并画出曲线最大挠度及最大转角xfPL解:解:建立坐标系并写出弯矩方程写出微分方程并积分xfPLa[ [例例2] 2] 求下列各等截面直梁的弹性曲线、最大挠度及最大转角应用位移边界条件求积分常数PLaxf写出弹性曲线方程并画出曲线最大挠度及最大转角PLaxf [ [例例3] 3] 试用积分法求图示梁的挠曲线方程和转角方程,并求C截面挠度和A截面转角。
设梁的抗弯刚度EI为常数 解解:1 1.外力分析.外力分析:求支座约束反力研究梁ABC,受力分析如图,列平衡方程: 2.内力分析.内力分析:分区段列出梁的弯矩方程:3.变形分析.变形分析:AB段:由于 积分后得:BC段:由于 ,积分后得:边界条件:边界条件:当连续光滑条件:连续光滑条件:代入以上积分公式中,解得: 故挠曲线方程和转角方程分别为: 由此可知: §7-4 §7-4 叠加法计算梁的叠加法计算梁的位移位移一、载荷叠加一、载荷叠加 多个载荷同时作用于结构而引起的变形等于每个载荷单独作用于结构而引起的变形的代数和二、结构形式叠加(逐段刚化法)二、结构形式叠加(逐段刚化法) [ [例例4] 4] 按叠加原理求A点转角和C点挠度解、① 载荷分解如图② 由梁的简单载荷变形表, 查简单载荷引起的变形。
PP=+AAABBB CaaPP=+AAABBB Caa③ 叠加 [ [例例5] 试用叠加法求图示梁C截面挠度和转角设梁的抗弯刚度EI为常数 (已知AB=BC=l/2) (a)(b) + 解解:将原图分解成图(a)和图(b)所示情况 查表,对于图(a)有:于是有:对于图(b)有:故梁C截面挠度为:转角为: (顺时针) 说明:对于图(a):BC段无内力,因而BC段不变形,BC段为直线 [ [例例6] 按叠加原理求C点挠度解解:载荷无限分解如图由梁的简单载荷变形表, 查简单载荷引起的变形叠加q00.5L0.5LxdxbxfC [ [例例7] 结构形式叠加(逐段刚化法) 原理说明PL1L2ABCBCPL2f1f2等价等价xfxffPL1L2ABC刚化刚化AC段段PL1L2ABC刚化刚化BC段段PL1L2ABCMxf§7-5 §7-5 梁的刚度校核梁的刚度校核一、梁的刚度条件一、梁的刚度条件 其中[]称为许用转角;[f/L]称为许用挠跨比。
通常依此条件进行如下三种刚度计算: 、校核刚度:校核刚度: 、设计截面尺寸设计截面尺寸:、设计载荷:设计载荷:(对于土建工程,强度常处于主要地位,刚度常处于从属地位特殊构件例外) [ [例例8] 图示木梁的右端由钢拉杆支承已知梁的横截面为边长a=200mm的正方形,均布载荷集度 ,弹性模量E1=10GPa, 钢 拉 杆 的 横 截 面 面 积 A=250mm2, 弹 性 模 量E2=210GPa,试求拉杆的伸长量及梁跨中点D处沿铅垂方向的位移 解解:静静力力分分析析,求出支座A点的约束反力及拉杆BC所受的力列平衡方程:本题既可用积分法,也可用叠加法求图示梁D截面的挠度积分法:积分法:拉杆BC的伸长为梁AB的弯矩方程为挠曲线的近似微分方程积分得: 边界条件:当 时, ;当 时,代入上式得故当 时, 叠加法:叠加法: 说明:AB梁不变形,BC杆变形后引起AB梁中点的位移,与BC不变形,AB梁变形后引起AB梁中点的位移叠加。
PL=400mmP2=2kNACa=0.1m200mmDP1=1kNB [例例9] 下图为一空心圆截面梁,内外径分别为:d=40mm、D=80mm,梁的E=210GPa,工程规定C点的[f/L]=0.00001,B点的[]=0.001弧度,试校核此梁的刚度P1=1kNABDCP2BCDAP2=2kNBCDAP2BCaP2BCDAMP2BCa=++图图1 1图图2 2图图3 3解: 结构变换,查表求简单载荷变形PL=400mmP2=2kNACa=0.1m200mmDP1=1kNBP1=1kNABDCP2BCDAMxfP2BCa=++图图1 1图图2 2图图3 3PL=400mmP2=2kNACa=0.1m200mmDP1=1kNBP1=1kNABDCP2BCDAMxf 叠加求复杂载荷下的变形 校核刚度 一、挠曲线近似微分方程 的近似性反映在哪几方面? 二、用积分法求图示组合梁的挠曲线方程时,需应用的支承条件和连续条件是什么? 三、长度为L,重量为P的等截面直梁,放置在水平刚性平面上。
若在端点施力P/3上提,未提起部分仍保持与平面密合,试求提起部分的长度第七章第七章 练习题练习题解解:A点处梁的曲率半径为 , 即。





