
2020年福建省泉州市南安恩惠中学高二数学文模拟试卷含解析.docx
12页2020年福建省泉州市南安恩惠中学高二数学文模拟试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为A. B. C. D. 参考答案:A略2. 在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为( ).A.2 000元 B.2 200元 C.2 400元 D.2 800元参考答案:B略3. (5分)下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;③线性回归方程必过();④在一个2×2列联中,由计算得K2=13.079则有99%的把握确认这两个变量间有关系;其中错误 的个数是( )本题可以参考独立性检验临界值表:P(K2≥k)0.50.400.250.150.100.050.250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.5357.87910.828 A. 0 B. 1 C. 2 D. 3参考答案:B4. 已知抛物线C:y2=x与直线l:y=kx+1.“k≠0”是“直线l与抛物线C有两个不同的交点”的( )A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件参考答案:A略5. (5分)如果复数z满足(2+i)z=5i(i是虚数单位),则z( ) A. 1+2i B. ﹣1+2i C. 2+i D. 1﹣2i参考答案:A6. 变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则A. r2 详解】正方体的体积与棱长之间的关系是函数关系,故正确;人的身高与视力之间不具有相关关系,故错误;汽车的重量和汽车每消耗1升汽油所行驶的平均路程成负相关关系,故正确;数学成绩与语文成绩之间不具有相关关系,故正确;故选:.【点睛】判断两个变量间的关系是函数关系还是相关关系的关键是判断两个变量之间的关系是否是确定的,若确定的则是函数关系;若不确定,则是相关关系.8. 已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为( )(A) (B) (C) (D) 参考答案:D解析:设的中点为D,连结D,AD,易知即为异面直线与所成的角,由三角余弦定理,易知.故选D 9. 下列不等式中解集为实数集R的是( ) A. B. C. D. 参考答案:C略10. 设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则,类比这个结论可知:四面体S﹣ABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为R,四面体S﹣ABC的体积为V,则R=( )A. B.C. D.参考答案:C【考点】类比推理.【分析】根据平面与空间之间的类比推理,由点类比点或直线,由直线 类比 直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.【解答】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为 ∴R=故选C.二、 填空题:本大题共7小题,每小题4分,共28分11. 右图是底面半径为1,母线长均为2的圆锥和圆柱的组合体,则该组合体的侧视图的面积为____________________. 参考答案:12. 在边长为1的正方体ABCD-A1B1C1D1中,点A1到平面AB1D1的距离是 。 参考答案:13. 在等差数列中,若,则有成立.类比上述性质,在等比数列 中,若,则存在的类似等式为________________________. 参考答案:14. 一枚骰子(形状为正方体,六个面上分别标有数字1,2,3, 4,5,6的玩具)先后抛掷两次,骰子向上的点数依次为.则的概率为 . 参考答案:略15. 已知函数既有极大值又有极小值,则实数的取值范围是 参考答案: 16. 函数的定义域是 参考答案:17. 已知:椭圆的离心率,则实数k的值为 .参考答案: 或3【考点】椭圆的简单性质.【专题】计算题.【分析】当K>5时,由 e===求得K值,当0<K<5时,由 e===,求得K值.【解答】解:当K>5时,e===,K=.当0<K<5时,e===,K=3.综上,K=或3.故答案为:或3.【点评】本题考查椭圆的标准方程,以及简单性质的应用,体现了分类讨论的数学思想,易漏讨论焦点在y轴上的情形.三、 解答题:本大题共5小题,共72分解答应写出文字说明,证明过程或演算步骤18. 如图,在三棱柱ABC-A1B1C1中,已知,,点A1在底面ABC上的投影是线段BC的中点O.(1)证明:在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求三棱柱ABC-A1B1C1的侧面积.参考答案:(1)证明:如图,连接,在中,作于点.因为,所以,因为平面,平面,所以.因为,,所以,又,所以平面,因为平面,所以,因为,所以平面.又,,且,所以,解得,所以存在点满足条件,且.(2)解:如图,连接,,由(1)知,,又,所以平面,所以,所以四边形的高.所以. 19. (12分)已知a=(1,-3,2),b=(-2,1,1),点A(-3,-1,4),B(-2,-2,2).(1)求|2a+b|;(2)在直线AB上,是否存在一点E,使得 (O为原点)?参考答案:20. (本小题满分13分)已知方程。 1)当且仅当在什么范围内,该方程表示一个圆2)当在以上范围内变化时,求圆心的轨迹方程参考答案:(1)时,给定的方程表示一个圆 (2)为所求圆心轨迹方程1)由, , 当且仅当时, 即时,给定的方程表示一个圆2)设圆心坐标为,则(为参数)消去参数,为所求圆心轨迹方程21. (本小题满分10分)已知等差数列的前n项的和记为,.(1)求数列的通项公式;(2)求的最小值及其相应的的值.参考答案:略22. 已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)由题意,求出函数的导数,再由曲线y=f(x)在点(1,f(1))处的切线与x轴平行可得出f′(1)=0,由此方程即可解出k的值;(II)由(I)知, =,x∈(0,+∞),利用导数解出函数的单调区间即可;(III)先给出g(x)=xf'(x),考查解析式发现当x≥1时,g(x)=xf'(x)≤0<1+e﹣2一定成立,由此将问题转化为证明g(x)<1+e﹣2在0<x<1时成立,利用导数求出函数在(0,1)上的最值,与1+e﹣2比较即可得出要证的结论.【解答】解:(I)函数为常数,e=2.71828…是自然对数的底数),∴=,x∈(0,+∞),由已知,,∴k=1.(II)由(I)知, =,x∈(0,+∞),设h(x)=1﹣xlnx﹣x,x∈(0,+∞),h'(x)=﹣(lnx+2),当x∈(0,e﹣2)时,h'(x)>0,当x∈( e﹣2,1)时,h'(x)<0,可得h(x)在x∈(0,e﹣2)时是增函数,在x∈( e﹣2,1)时是减函数,在(1,+∞)上是减函数,又h(1)=0,h(e﹣2)>0,又x趋向于0时,h(x)的函数值趋向于1∴当0<x<1时,h(x)>0,从而f'(x)>0,当x>1时h(x)<0,从而f'(x)<0.综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).(III)由(II)可知,当x≥1时,g(x)=xf'(x)≤0<1+e﹣2,故只需证明g(x)<1+e﹣2在0<x<1时成立.当0<x<1时,ex>1,且g(x)>0,∴.设F(x)=1﹣xlnx﹣x,x∈(0,1),则F'(x)=﹣(lnx+2),当x∈(0,e﹣2)时,F'(x)>0,当x∈( e﹣2,1)时,F'(x)<0,所以当x=e﹣2时,F(x)取得最大值F(e﹣2)=1+e﹣2.所以g(x)<F(x)≤1+e﹣2.综上,对任意x>0,g(x)<1+e﹣2.。
