好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

浙江专用高考数学新增分大一轮复习第九章平面解析几何9.7抛物线课件.pptx

94页
  • 卖家[上传人]:tang****xu1
  • 文档编号:120201096
  • 上传时间:2020-03-02
  • 文档格式:PPTX
  • 文档大小:16.81MB
  • / 94 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 9 7 抛物线 第九章 平面解析几何 NEIRONGSUOYIN 内容索引 基础知识 自主学习 题型分类 深度剖析 课时作业 1基础知识 自主学习 PART ONE 知识梳理 1 抛物线的概念 平面内与一个定点F和一条定直线l l不经过点F 的距离 的点的轨迹叫做 抛物线 点F叫做抛物线的 直线l叫做抛物线的 2 抛物线的标准方程与几何性质 ZHISHISHULI 相等 准线焦点 标准 方程 y2 2px p 0 y2 2px p 0 x2 2py p 0 x2 2py p 0 p的几何意义 焦点F到准线l的距离 图形 顶点坐标O 0 0 对称轴x轴y轴 焦点坐标 离心率e 1 准线方程 范围x 0 y Rx 0 y Ry 0 x Ry 0 x R 开口方向向右向左向上向下 1 若抛物线定义中定点F在定直线l上时 动点的轨迹是什么图形 概念方法微思考 提示 过点F且与l垂直的直线 2 直线与抛物线只有一个交点是直线与抛物线相切的什么条件 提示 直线与抛物线的对称轴平行时 只有一个交点 但不是相切 所以直 线与抛物线只有一个交点是直线与抛物线相切的必要不充分条件 题组一 思考辨析 1 判断下列结论是否正确 请在括号中打 或 1 平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物 线 2 方程y ax2 a 0 表示的曲线是焦点在x轴上的抛物线 且其焦点坐标是 准线方程是x 3 抛物线既是中心对称图形 又是轴对称图形 基础自测 JICHUZICE 1234567 5 过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛 物线的通径 那么抛物线x2 2ay a 0 的通径长为2a 1234567 题组二 教材改编 2 P69例4 过抛物线y2 4x的焦点的直线l交抛物线于P x1 y1 Q x2 y2 两 点 如果x1 x2 6 则 PQ 等于 A 9 B 8 C 7 D 6 1234567 解析 抛物线y2 4x的焦点为F 1 0 准线方程为x 1 根据题意可得 PQ PF QF x1 1 x2 1 x1 x2 2 8 1234567 3 P73A组T3 若抛物线y2 4x的准线为l P是抛物线上任意一点 则P到准线l 的距离与P到直线3x 4y 7 0的距离之和的最小值是 解析 由抛物线定义可知点P到准线l的距离等于点P到焦点F的距离 由抛物线y2 4x及直线方程3x 4y 7 0可得直线与抛物线相离 点P到准线l的距离与点P到直线3x 4y 7 0的距离之和的最小值为点F 1 0 到直线3x 4y 7 0的距离 123456 4 P72T1 已知抛物线的顶点是原点 对称轴为坐标轴 并且经过点P 2 4 则该抛物线的标准方程为 7 y2 8x或x2 y 解析 设抛物线方程为y2 mx m 0 或x2 my m 0 将P 2 4 代入 分别得方程为y2 8x或x2 y 题组三 易错自纠 5 设抛物线y2 8x上一点P到y轴的距离是4 则点P到该抛物线焦点的距离是 A 4 B 6 C 8 D 12 123456 7 解析 如图所示 抛物线的准线l的方程为x 2 F是抛物线的焦点 过点P作PA y轴 垂足是A 延长PA交直线l于点B 则 AB 2 由于点P到y轴的距离为4 则点P到准线l的距离 PB 4 2 6 所以点P到焦点的距离 PF PB 6 故选B 6 已知抛物线C与双曲线x2 y2 1有相同的焦点 且顶点在原点 则抛物线 C的方程是 123456 7 7 设抛物线y2 8x的准线与x轴交于点Q 若过点Q的直线l与抛物线有公共 点 则直线l的斜率的取值范围是 123456 1 1 7 解析 Q 2 0 当直线l的斜率不存在时 不满足题意 故设直线l的方程为y k x 2 代入抛物线方程 消去y整理得k2x2 4k2 8 x 4k2 0 当k 0时 符合题意 当k 0时 由 4k2 8 2 4k2 4k2 64 1 k2 0 解得 1 k 1且k 0 综上 k的取值范围是 1 1 2题型分类 深度剖析 PART TWO 命题点1 定义及应用 例1 设P是抛物线y2 4x上的一个动点 若B 3 2 则 PB PF 的最小 值为 题型一 抛物线的定义和标准方程 多维探究 解析 如图 过点B作BQ垂直准线于点Q 交抛物线于点P1 则 P1Q P1F 则有 PB PF P1B P1Q BQ 4 即 PB PF 的最小值为4 4 1 若将本例中的B点坐标改为 3 4 试求 PB PF 的最小值 引申探究 解 由题意可知点B 3 4 在抛物线的外部 PB PF 的最小值即为B F两点间的距离 F 1 0 2 若将本例中的条件改为 已知抛物线方程为y2 4x 直线l的方程为x y 5 0 在抛物线上有一动点P到y轴的距离为d1 到直线l的距离为d2 求d1 d2的最小值 解 由题意知 抛物线的焦点为F 1 0 点P到y轴的距离d1 PF 1 所以d1 d2 d2 PF 1 易知d2 PF 的最小值为点F到直线l的距离 命题点2 求标准方程 例2 设抛物线C y2 2px p 0 的焦点为F 点M在C上 MF 5 若以MF 为直径的圆过点 0 2 则C的标准方程为 A y2 4x或y2 8x B y2 2x或y2 8x C y2 4x或y2 16x D y2 2x或y2 16x 又因为圆过点 0 2 所以yM 4 解得p 2或p 8 所以抛物线C的标准方程为y2 4x或y2 16x 故选C 1 与抛物线有关的最值问题 一般情况下都与抛物线的定义有关 看到 准线想焦点 看到焦点想准线 这是解决与过抛物线焦点的弦有关问题 的重要途径 2 求抛物线标准方程的常用方法是待定系数法 其关键是判断焦点位置 开口方向 在方程的类型已经确定的前提下 只需一个条件就可以确定抛 物线的标准方程 思维升华 跟踪训练1 1 设P是抛物线y2 4x上的一个动点 则点P到点A 1 1 的距 离与点P到直线x 1的距离之和的最小值为 解析 如图 易知抛物线的焦点为F 1 0 准线是x 1 由抛物线的定义知 点P到直线x 1的距离等于点P到F的距离 于是 问题转化为在抛物线上求一点P 使点P到点A 1 1 的距离与点P 到F 1 0 的距离之和最小 显然 连接AF与抛物线相交的点即为满足题意的点 2 如图所示 过抛物线y2 2px p 0 的焦点F的直线交抛物线于点A B 交其准线l于点C 若 BC 2 BF 且 AF 3 则此抛物线的标准方程为 解析 分别过点A B作AA1 l BB1 l 且垂足分别为A1 B1 由已知条件 BC 2 BF 得 BC 2 BB1 所以 BCB1 30 又 AA1 AF 3 所以 AC 2 AA1 6 所以 CF AC AF 6 3 3 所以F为线段AC的中点 故抛物线的标准方程为y2 3x 题型二 抛物线的几何性质 师生共研 解析 不妨设P在第一象限 过Q作QR PM 垂足为R 设准线与x轴的交点为E 由抛物线焦点弦的性质可得 解析 设A x1 y1 B x2 y2 分别过点A B作直线x 2的垂线 在解决与抛物线的性质有关的问题时 要注意利用几何图形的形象 直观的特点来解题 特别是涉及焦点 顶点 准线的问题更是如此 思维升华 跟踪训练2 1 已知直线l过抛物线C的焦点 且与C的对称轴垂直 l与C交于 A B两点 AB 12 P为C的准线上一点 则 ABP的面积为 A 18 B 24 C 36 D 48 解析 以抛物线的顶点为原点 水平方向为x轴 竖直方向为y轴 建立平面 直角坐标系 设抛物线方程为y2 2px p 0 可得y2 p2 AB 12 即2p 12 所以p 6 因为点P在准线上 所以点P到AB的距离为p 6 2 2015 浙江 如图 设抛物线y2 4x的焦点为F 不经过焦点的直线上有三 个不同的点A B C 其中点A B在抛物线上 点C在y轴上 则 BCF与 ACF的面积之比是 解析 由图形可知 BCF与 ACF有公共的顶点F 且A B C三点共线 由抛物线方程知焦点F 1 0 作准线l 则l的方程为x 1 点A B在抛物线上 过A B分别作AK BH与准线垂直 垂足分别为点K H 且与y轴分别交于点N M 由抛物线定义 得 BM BF 1 AN AF 1 在 CAN中 BM AN 解 设抛物线的方程是x2 2py p 0 A x1 y1 B x2 y2 由抛物线定义可知y1 y2 p 8 又AB的中点到x轴的距离为3 y1 y2 6 p 2 抛物线的标准方程是x2 4y 题型三 直线与抛物线 师生共研 例4 设抛物线的顶点在坐标原点 焦点F在y轴正半轴上 过点F的直线 交抛物线于A B两点 线段AB的长是8 AB的中点到x轴的距离是3 1 求抛物线的标准方程 2 设直线m在y轴上的截距为6 且与抛物线交于P Q两点 连接QF并延长 交抛物线的准线于点R 当直线PR恰与抛物线相切时 求直线m的方程 解 由题意知 直线m的斜率存在 设直线m y kx 6 k 0 P x3 y3 Q x4 y4 又Q F R三点共线 kQF kFR 又F 0 1 整理得 x3x4 2 4 x3 x4 2 2x3x4 16 16x3x4 0 1 直线与抛物线的位置关系和直线与椭圆 双曲线的位置关系类似 一般 要用到根与系数的关系 2 有关直线与抛物线的弦长问题 要注意直线是否过抛物线的焦点 若过 抛物线的焦点 设焦点在x轴的正半轴上 可直接使用公式 AB x1 x2 p 若不过焦点 则必须用一般弦长公式 3 涉及抛物线的弦长 中点 距离等相关问题时 一般利用根与系数的关 系采用 设而不求 整体代入 等解法 提醒 涉及弦的中点 斜率时一般用 点差法 求解 思维升华 4 设AB是过抛物线y2 2px p 0 焦点F的弦 若A x1 y1 B x2 y2 则 以弦AB为直径的圆与准线相切 通径 过焦点垂直于对称轴的弦 长等于2p 通径是过焦点最短的弦 跟踪训练3 已知抛物线C x2 2py p 0 和定点M 0 1 设过点M的动直 线交抛物线C于A B两点 抛物线C在A B处的切线交点为N 1 若N在以AB为直径的圆上 求p的值 解 可设AB y kx 1 A x1 y1 B x2 y2 将AB的方程代入抛物线C 得 x2 2pkx 2p 0 4p2k2 8p 0 显然方程有两不等实根 则x1 x2 2pk x1x2 2p 则有p 2 2 若 ABN面积的最小值为4 求抛物线C的方程 又 N在yAN和yBN上 N pk 1 故抛物线C的方程为x2 4y 例 15分 已知抛物线C y mx2 m 0 焦点为F 直线2x y 2 0交抛物 线C于A B两点 P是线段AB的中点 过P作x轴的垂线交抛物线C于点Q 1 求抛物线C的焦点坐标 2 若抛物线C上有一点R xR 2 到焦点F的距离为3 求此时m的值 3 是否存在实数m 使 ABQ是以Q为直角顶点的直角三角形 若存在 求 出m的值 若不存在 请说明理由 答题模板 DATIMUBAN 直线与圆锥曲线问题的求解策略 规范解答 消去y得mx2 2x 2 0 m 0 依题意 有 2 2 4 m 2 8m 4 0恒成立 方程必有两个不等实根 7分 m 0 m 2 存在实数m 2 使 ABQ是以Q为直角顶点的直角三角形 15分 答题模板 解决直线与圆锥曲线的位置关系的一般步骤 第一步 联立方程 得关于x或y的一元二次方程 第二步 写出根与系数的关系 并求出 0时参数范围 或指出直线过曲线 内一点 第三步 根据题目要求列出关于x1x2 x1 x2 或y1y2 y1 y2 的关系式 求 得结果 第四步 反思回顾 查看有无忽略特殊情况 3课时作业 PART THREE 基础保分练 12345678910111213141516 解析 抛物线的标准方程为x2 8y 则其焦点坐标为 0 2 故选B 2 已知抛物线C y2 4x的焦点为F 准线为l 点A l 线段AF交抛物线C 于点B 若。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.