
电动汽车动力电池组管理系统设计及基于安时法的soc估算硕士论文.pdf
67页电动汽车动力电池组管理电动汽车动力电池组管理系统设计系统设计及基于及基于安时法的安时法的 SOC 估算估算 Battery Management System Design and State of Charge Estimation Based on Ampere-Hour Method 学科专业:控制理论与控制工程 研 究 生:高金超 指导教师:夏超英 教授 天津大学电气与自动化工程学院 二零一三年十二月 独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果, 也不包含为获得 天津大学天津大学 或其他教育机构的学位或证书而使用过的材料 与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意 学位论文作者签名: 签字日期: 年 月 日 学位论文版权使用授权书 本学位论文作者完全了解 天津大学天津大学 有关保留、使用学位论文的规定特授权 天津大学天津大学 可以将学位论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。
同意学校向国家有关部门或机构送交论文的复印件和磁盘 (保密的学位论文在解密后适用本授权说明) 学位论文作者签名: 导师签名: 签字日期: 年 月 日 签字日期: 年 月 日 摘摘 要要 从节约能源与环境保护的角度来讲,不论是 HEV 与 PHEV 皆为过渡产品,就长期发展而言,纯电动车才是理想绿色替代能源产品,是未来发展的必然电动车未来将以锂离子电池为主要动力驱动来源, 原因在于相对于其它蓄电池来说锂电池具有高能量密度优势,性能稳定动力电池组的安全性和成本一直是制约电动汽车发展的主要因素,作为实时监控电池组状态、对电池组进行智能均衡和充放电处理的电子部件,电池管理系统(BMS)是连接电池组与整车控制器的桥梁,可以保障电池组的安全、延长其使用寿命、估算其剩余容量,是动力电池组不可缺少的组成部分在本文中即是设计完整的电池管理系统 论文首先完成对磷酸铁锂动力电池组性能的研究, 在充分了解电池组性能的基础上设计了对电池组电压、电流、温度的检测流程图,并结合相关文献设计了电池组的均衡算法、SOC 估算方法和安全管理方案,系统采用分布式控制方案,最后设计了 CAN 通信协议实现系统间的通信功能。
在系统软件设计过程中加入了监控方案保证系统的可靠性 实验结果表明,系统可靠地实现了对电池组的监控和管理,可以准确估算电池组的剩余容量,系统具有良好的稳定性与安全性 关键词关键词::电动汽车,电池管理系统,CAN 总线,英飞凌 XC2785 ABSTRACT From the perspective of energy conservation and environmental protection, both HEV and PHEV are transitional products. On long term development, pure electric vehicle, the ideal green energy product, is the inevitable trend of future development. Because of the advantages of high energy density and stable performance compared with other batteries, lithium-ion battery will be the main power source of electric vehicle in the future. There are several factors restricting the development of electric vehicle, including cost, stability and security of the battery, Battery Management System (BMS) is a link between battery and the vehicle controller. As the electronic component realizing real-time monitoring, automatic balancing and intelligent charging and discharging of battery, BMS is an indispensable component of the power and energy storage battery pack. It plays an important role in ensuring battery safety, prolonging battery life and estimating remaining capacity of the battery pack. In this article, a complete BMS is designed for the series lithium iron phosphate battery pack. Firstly, the performance of lithium iron phosphate battery pack is studied. And the detection flowcharts of battery voltage, current and temperature are designed based on the above work. Then the battery pack equalization algorithm, SOC estimation method and safety management scheme are designed. Finally, the CAN communication protocol is designed to realize the communication of the system because of the distributed control scheme of the system. And a monitoring program is added to the software implementation process to ensure system reliability. Experimental results show that the designed BMS realized the monitoring and management of battery pack reliably, and accurately estimated the remaining capacity of the battery pack. And the stability and security of the system are verified. KEY WORDS::Electric Vehicles, Battery Management System, CAN Bus, Infineon XC2785 目 录 第一章 绪论..................................................................................................................1 1.1 课题背景..........................................................................................................1 1.2 电动汽车的国内外发展现状..........................................................................2 1.2.1 电动汽车的国内发展现状....................................................................2 1.2.2 电动汽车的国内发展现状....................................................................3 1.3 研究的目的及意义..........................................................................................3 1.4 本文主要完成的工作......................................................................................4 第二章 电池管理系统设计思路..................................................................................5 2.1 动力电池组......................................................................................................5 2.2 安时-电压法估算 SOC....................................................................................5 2.3 电池组特性研究..............................................................................................8 2.4 电池组均衡....................................................................................................12 第三章 电池管理系统软件设计................................................................................14 3.1 电池管理系统软件体系................................................................................14 3.2 检测单元设计................................................................................................15 3.2.1 温度检测..............................................................................................15 3.2.2 单体电压检测......................................................................................17 3.2.3 检测单元主程序........................。












