好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2019版中考数学二模试卷(含解析).doc

27页
  • 卖家[上传人]:桔****
  • 文档编号:537353058
  • 上传时间:2023-10-10
  • 文档格式:DOC
  • 文档大小:563KB
  • / 27 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2019版中考数学二模试卷(含解析)一.选择题(共12小题,满分36分,每小题3分)1.16的算术平方根是(  )A.4 B.﹣4 C.±4 D.22.如图,是从不同的方向看一个物体得到的平面图形,该物体的形状是(  )A.圆锥 B.圆柱 C.三棱锥 D.三棱柱3.数据3329用科学记数法表示正确的是(  )A.3.329×102 B.33.29×103 C.3.329×103 D.0.3329×1054.点(3,﹣2)关于x轴的对称点坐标是(  )A.(3,2) B.(﹣3,﹣2) C.(﹣3,2) D.(3,﹣2)5.以下说法中正确的是(  )A.若a>|b|,则a2>b2 B.若a>b,则< C.若a>b,则ac2>bc2 D.若a>b,c>d,则a﹣c>b﹣d6.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则△ADE的周长是(  )A.9+3 B.12+6 C.18+3 D.18+67.若方程 x2+px+3=0 的一个根是﹣3,则它的另一个根是(  )A.﹣1 B.0 C.1 D.28.如图,在⊙O中,直径AB与弦MN相交于点P,∠NPB=45°,若AP=2,BP=6,则MN的长为(  )A. B.2 C.2 D.89.如图,在小山的东侧A点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B两点间的距离为(  )米.A.750 B.375 C.375 D.75010.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是(  )A.4 B.3 C.2 D.111.如图,在平行四边形ABCD中,BC=4,现将平行四边形ABCD绕点A旋转到平行四边形AEFG的位置,其中点B,C,D分别落在点E,F,G处,且点B,E,D,F在同一直线上,如果点E恰好是对角线BD的中点,那么AB的长度是(  )A.4 B.3 C.2 D.12.如图都是由同样大小的围棋子按一定规律摆出的图案期,第①个图案有4个围棋子,第②个图案有9个围棋子,第③个图案有14个围棋子,以此类推,则第⑦图案围棋子的个数为(  )A.30 B.34 C.40 D.47二.填空题(共6小题,满分18分,每小题3分)13.因式分解:x2﹣9x+18=   .14.如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=   .15.甲、乙、丙三名学生各自随机选择到A、B两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为   .16.如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为   .17.如图,在菱形ABCD中,已知∠ABC=60°,AB=6,E为AD中点,BE与AC交于点O,F为EC上点,且OF∥BC,连接BF,BF与AC交于点M,则OM的长度是   .18.已知⊙O的半径长为2,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.若S△AOD是S△AOB和S△COD的比例中项,则OD的长为   .三.解答题(共7小题,满分86分)19.(16分)计算题:(1)先化简,再求值:(﹣m﹣n)÷m2,其中m﹣n=.(2)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣120.(11分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?21.(11分)甲、乙两人进行羽毛球比赛,把球看成点,其飞行的路线为抛物线的一部分.如图建立平面直角坐标系,甲在O点正上方1m的P处发球,羽毛球飞行的高度y(m)与羽毛球距离甲站立位置(点O)的水平距离x(m)之间满足函败表达式y=a(x﹣4)2+h.已知点O与球网的水平距离为5m,球网的高度为1.55m,球场边界距点O的水平距离为10m.(1)当a=﹣时,求h的值,并通过计算判断此球能否过网.(2)若甲发球过网后,乙在另一侧距球网水平距离lm处起跳扣球没有成功,球在距球网水平距离lm,离地面高度2.2m处飞过,通过计算判断此球会不会出界?22.(11分)在平面直角坐标系xOy中,反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,3)和B(﹣3,m).(1)求反比例函数y1=和一次函数y2=ax+b的解析式;(2)点C是坐标平面内一点,且BC∥x轴,当∠BAC=90°时,求点C坐标.23.(11分)如图,AB是⊙O直径,点C是⊙O上一点,D为的中点,AD与BC交于点M.(1)证明:△ACD∽△CMD;(2)若AC=3,tan∠CBD=,求△BCD的面积.24.(12分)在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.25.(14分)如图,在梯形ABCD中,AD∥BC,BC=18,DB=DC=15,点E、F分别段BD、CD上,DE=DF=5.AE的延长线交边BC于点G,AF交BD于点N、其延长线交BC的延长线于点H.(1)求证:BG=CH;(2)设AD=x,△ADN的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)联结FG,当△HFG与△ADN相似时,求AD的长.2019年四川省绵阳市涪城区关帝中学中考数学二模试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【分析】利用算术平方根的定义判断即可.【解答】解:16的算术平方根是4,故选:A.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.2.【分析】由主视图和左视图可得此几何体为锥体,根据俯视图是圆及圆心可判断出此几何体为圆锥.【解答】解:∵主视图和左视图都是三角形,∴此几何体为锥体,∵俯视图是一个圆及圆心,∴此几何体为圆锥,故选:A.【点评】本题考查了由三视图判断几何体的知识,用到的知识点为:由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据3329用科学记数法表示为3.329×103,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而求出即可.【解答】解:点(3,﹣2)关于x轴的对称点坐标是(3,2),故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.5.【分析】根据不等式的性质进行判断.【解答】解:A、若a>|b|,则a2>b2,正确;B、若a>b,当a=1,b=﹣2,时则>,错误;C、若a>b,当c2=0时则ac2=bc2,错误;D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;故选:A.【点评】考查了不等式的性质.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.6.【分析】首先确定三角形的三个角的度数,从而判断该三角形是特殊的直角三角形,然后根据半径求得斜边的长,从而求得另外两条直角边的长,进而求得周长.【解答】解:连接OE,∵多边形ABCDEF是正多边形,∴∠DOE==60°,∴∠DAE=∠DOE=×60°=30°,∠AED=90°,∵⊙O的半径为6,∴AD=2OD=12,∴DE=AD=×12=6,AE=DE=6,∴△ADE的周长为6+12+6=18+6,故选:D.【点评】考查了正多边形和圆的知识,解答的关键是确定三角形的三个角的度数,然后确定其三边的长,难度不大.7.【分析】由根与系数的关系即可求得答案.【解答】解:设方程的另一根为a,由根与系数的关系可得﹣3a=3,解得a=﹣1,∴方程的另一根为﹣1,故选:A.【点评】本题主要考查根与系数的关系,熟练掌握一元二次方程两根之和等于﹣、两根之积等于是解题的关键.8.【分析】过点O作OD⊥MN于点D,连接ON,先根据AB是直径AP=2,BP=6求出⊙O的半径,故可得出OP的长,因为∠NPB=45゜,所以△OPD是等腰直角三角形,再根据勾股定理求出OD的长,故可得出DN的长,由此即可得出结论.【解答】解:过点O作OD⊥MN于点D,连接ON,则MN=2DN,∵AB是⊙O的直径,AP=2,BP=6,∴⊙O的半径=(2+6)=4,∴OP=4﹣AP=4﹣2=2,∵∠NPB=45゜,∴△OPD是等腰直角三角形,∴OD=,在Rt△ODN中,DN=,∴MN=2DN=2.故选:C.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.【分析】作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.【解答】解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=375(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).故选:A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.10.【分析】由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.