
我国古代的正负数.doc
3页我国古代的正负数 零是一个界限我们看温度计,温度就有“零上”与“零下”两种情况如昨天最高气温是8摄氏度(注意:不要把“8摄氏度”说成“摄氏8度”,因为摄氏度”是一个度量单位,三个字不能分开),最低气温是零下4摄氏度通常我们称“零上”为“正”,零下为“负”正”的量用正数表示,“负”的量用负数(在正数前面加上一个负号“-”所得的数)表示那么,昨天的气温范围就是-4℃~8℃为了表示两种相反意义的量,就必须用正数与负数值得我们引以自豪的是:负数在世界上最早出现于我国西汉时期(公元前206年到公元25年)编成的一部数学巨著《九章算术》的“方程章”中这一章已讨论了一次方程组的解法我们知道,解方程组时,在消去一个未知数的过程中往往会出现其他未知数的系数为负数的情形因此解方程组必然要引进负数概念《九章算术》中指出:“两算得失相反,要令正负以名之”当时是用算筹来进行计算的,所以在筹算中,相应地规定以红等为正,黑筹为负;或将算筹直列作正,斜置作负这样,遇到具有相反意义的量,就能用正负数明确地加以区别了在《九章算术》中,除了引进正负数的概念之处,还完整地叙述了正负数的加减运算法则“正负术”即“同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之”。
这段话的前一半说的是减法法则,后一半说的是加法法则它的意思是:同号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加;零减正得负,零减负得正异号两数相加,等于其绝对值相减;同号两数相加,等于其绝对值相加;零加正得正,零加负得负外国首先提到负数的是印度人巴士卡洛,那已是公元1150年的事了,比《九章算术》成书迟1千多年即使到那时,对负数感到迷惑不解的仍大有人在例如法国大数学家韦达,他在代数方面作出了巨大贡献,但他却努力避免引进负数,在解方程求得负根时统统舍去1544年,德国人斯梯弗尔还把负数称为“荒谬”、“无稽”他们的主要障碍就是把零看作“没有,所以不能理解“比没有还要少”的现象直到1637年,法国大数学家笛卡儿发明了解析几何学,创立了坐标系和点的坐标概念,负数才获得了几何意义和实际意义确立了它在数学中的地位,逐渐为人们所公认从上面可以看出,我国数学巨著《九章算术》中的“正负术”与“方程术”不仅是我国数学中的两项伟大成就,在世界数学史上也是一份十分可贵的财富不过,《九章算术》并没有完全解决正负数的乘、除运算负负得正”这一法则,是公元11世纪我国宋朝的《议古根源》一书中阐明的毫无疑问,这在世界数学史上也是捷足先登的。
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师于是看,宋元时期小学教师被称为“老师”有案可稽清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”可见,“教师”一说是比较晚的事了如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”要练说,得练看看与说是统一的,看不准就难以说得好练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高我们在小学里只学习正数与零,这样就不能做“小数减去大数”的减法有了负数后,在数集合内,任何减法都是可以进行的另外,加法、乘法、除法(除数不为零)也都是可以进行的要练说,得练看看与说是统一的,看不准就难以说得好练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。
在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高第 页。
