好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

新版北师大八年级数学教学设计-第一章三角形的证明(全章)51-6.doc

11页
  • 卖家[上传人]:公****
  • 文档编号:480970251
  • 上传时间:2023-02-05
  • 文档格式:DOC
  • 文档大小:18.62KB
  • / 11 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 点这里,有很多篇《新版北师大八年级数学教学设计-第一章三角形的证明(全章)51》阅读本文: ∠ABC,那么BD=CE.这和证明等腰三角形两底角的角平分线3相等类似.证明如下:∵AB=AC,∴∠ABC=∠ACB(等边对等角).11又∵∠ABD= ∠ABC, ∴∠ACE= ∠ACB, 33∴∠ABD=∠ACE.在△BDC和△CEB中,∵∠ABD=∠ACE,BC=CB,∠ACB=∠ABC,∴△BDC≌△CEB(ASA).∴BD=CE(全等三角形的对应边相等)11[生]如果在△ABC中,AB=AC, ∠∠ABC,∠ACE=∠ ∠ACB,那么BD=CE也是成立的.因为AB=AC,44所以∠ABC=∠ACB,利用等量代换便可得到∠ABD=∠ACE,△BDC与△CEB全等的条件就能满足,也就能得到BD=CE.由此我们可以发现:11在△ABC中,AB=AC,∠ABD=∠ ∠ABC,∠ACE= ∠ACB,就一定有BD=CE成立. nn[生]也可以更直接地说:在△ABC中,AB=AC,∠ABD=∠ACE,那么BD=CE.[师]这两位同学都由特殊结论猜想出了一般结论.请同学们把一般结论的证明过程完整地书写出来.(教师可巡视指导)下面我们来讨论第(2)问,请小组代表发言.1111[生]在△ABC中,AB=AC,如果AD= AC,AE=,那么BD=CE;如果,,那么BD=CE.由223311此我们得到了一个更一般的结论:在△ABC中,AB=AC,AD= AC,AE= AB,那么BD=CE.证明如下: nn∵AB=AC.11又∵AD=,AE=, nn∴AD=AE.在△ADB和△AEC中,AB=AC,∠A=∠A,AD=AE,∴△ADB≌△AEC(SAS).∴BD=CE(全等三角形的对应边相等).[生]一般结论也可更简洁地叙述为:在△ABC中,如果AB=AC,AD=AE,那么BD=CE.[师]这里的两个问题都是由特殊结论得出更一般的结论,这是我们研究数学问题常用的一种思想方法,它会使我们得到意想不到的效果.例如通过对这两个问题的研究,我们可以发现等腰三角形中,相等的线段有无数组.这和等腰三角形是轴对称图形这个性质是密不可分的.第四环节:拓展延伸,探索等边三角形性质活动内容:提请学生在上面等要三角形性质定理的基础上,思考等边三角形的特殊性质:等边三角形三个内角都相等并且每个内角都等于60°.已知:如图,ΔABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.证明:在ΔABC中,∵AB=AC,∴∠B=∠C(等边对等角).同理:∠C=∠A,∴∠A=∠B=∠C(等量代换).又∵∠A+∠B+∠C=180°(三角形内角和定理),∴∠A=∠B=∠C=60°.活动效果:学生一般都能得到这些定理的证明,能规范地写出对于“等边三角形三个内角都相等并且每个内角都等于60°”的证明过程:第五环节: 随堂练习 及时巩固活动内容:在探索得到了等边三角形的性质的基础上,让学生独立完成以下练习。

      1.如图,已知△ABC和△BDE都是等边三角形.求证:AE=CD活动意图:在巩固等边三角形的性质的同时,进一步掌握综合证明法的基本要求和步骤,规范证明的书写格式第六环节:探讨收获 课时小结 C本节课我们通过观察探索、发现并证明了等腰三角形中相等的线段,并由特殊结论归纳出一般结论,四、教学反思本节课关注了问题的变式与拓广,实际上引领学生经历了提出问题、解决问题的过程,因而较好地提高了学生的研究能力、自主学习能力,但也应注意根据学生的情况进行适度的调整,因为学生先前这样的经验较少,因而对一些班级学生而言,完成全部这些教学任务,可能时间偏紧,为此,教学中可以适当减少一些内容,将部分内容延伸到课外,当然,也可以设计为两个课时,将研究过程进一步展开第一章 三角形的证明1. 等腰三角形(三)一、学生知识状况分析本节课是等腰三角形的第三课时,通过前面两课时的学习,学生已经掌握了等腰三角形的相关性质,并知道了用综合法证明命题的基本要求和步骤为学习等腰三角形的判定定理奠定了知识和方法的基础二、教学任务分析本节课的主要任务是探索等腰三角形的判定定理,在复习性质定理的基础上,引导学生反过来思考猜想新的命题,并进行证明。

      这样可以发展学生的逆向思维能力,同时引入反证法的基本证明思路,学习与运用反证法也成为本课时的教学任务之一因此,本节课的教学目标定为:1.探索等腰三角形判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解反证法的基本证明思路,并能简单应用4.培养学生的逆向思维能力三、教学过程分析本节课的教学过程设计了以下六个环节:复习引入--逆向思考,定理证明---巩固练习----适时提问 导出反证法---拓展延伸----课堂小结第一环节:复习引入活动过程:通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流 问题1.等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?问题2.我们是如何证明上述定理的?问题3.我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等?活动意图:设计是问题串是为引出等腰三角形的判定定理埋下伏笔学生独立思考是对上节课内容有效地检测手段第二环节:逆向思考,定理证明活动过程与效果预设:教师:上面,我们改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径.例如“等边对等角”,反过来成立吗?也就是:有两个角相等的三角形是等腰三角形吗?[生]如图,在△ABC中,∠B=∠C,要想证明AB=AC,只要构造两个全等的三角A形,使AB与AC成为对应边就可以了.[师]你是如何想到的?[生]由前面定理的证明获得启发,比如作BC的中线,或作A的平分线,或作BC上的高,都可以把△ABC分成两个全等的三角形.[师]很好.同学们可在练习本上尝试一下是否如此,然后分组讨论. B[生]我们组发现,如果作BC的中线,虽然把△ABC分成了两个三角形,但无法用公理和已证明的定理证明它们全等.因为我们得到的条件是两个三角形对应两边及其一边的对角分别相等,是不能够判断两个三角形全等的.后两种方法是可行的.[师]那么就请同学们任选一种方法按要求将推理证明过程书写出来.(教师可让两个同学在黑板上演示,并对推理证明过程讲评)(证明略)[师]我们用“反过来”思考问题,获得并证明了一个非常重要的定理——等腰三角形的判定定理:有两个角相等的三角形是等腰三角形.这一定理可以简单叙述为:等角对等边.我们不仅发现了几何图形的对称美,也发现了数学语言的对称美.第三环节:巩固练习活动过程与效果:将书中的随堂练习提前到此,是为了及时巩固判定定理。

      引导学生进行分析 已知:如图,∠CAE是△ABC的外角,AD∥BC且∠1=∠2.求证:AB=AC.证明:∵AD∥BC,∴∠1=∠B(两直线平行,同位角相等), ∠2=∠C(两直线平行,内错角相等).又∵∠1=∠2,∴∠B=∠C.∴AB=AC(等角对等边).第四环节:适时提问 导出反证法 B活动过程与效果:我们类比归纳获得一个数学结论,“反过来”思考问题也获得了一个数学结论.如果否定命题的条件,是否也可获得一个数学结论吗?我们一起来“想一想”:小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?有学生提出:“我认为这个结论是成立的.因为我画了几个三角形,观察并测量发现,如果两个角不相等,它们所对的边也不相等.但要像证明“等角对等边”那样却很难证明,因为它的条件和结论都是否定的.”的确如此.像这种从正面人手很难证明的结论,我们有没有别的证明思路和方法呢?我们来看一位同学的想法:如图,在△ABC中,已知∠B≠∠C,此时AB与Ac要么相等,要么不相等.假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B≠∠C.“∠C=∠B”与已知条件“∠B≠∠C”相矛盾,因此AB≠AC你能理解他的推理过程吗?再例如,我们要证明△ABC中不可能有两个直角,也可以采用这位同学的证法,假设有两个角是直角,不妨设∠A=90°,∠B=90°,可得∠A+∠B=180°,但△AB∠A+∠B+∠C=180°, “∠A+∠B=180°”与“∠A+∠B+∠C=180°”相矛盾,因此△ABC中不可能有两个直角.引导学生思考:上一道面的证法有什么共同的特点呢?引出反证法。

      都是先假设命题的结论不成立,然后由此推导出了与已知或公理或已证明过的定理相矛盾,从而证明命题的结论一定成立.这也是证明命题的一种方法,我们把它叫做反证法.接着用“反过来”思考问题的方法获得并证明了等腰三角形的判定定理“等角对等边”,最后结合实例了解了反证法的含义.第五环节:拓展延伸活动过程与效果:在一节课结束之际,为培养学生思维的综合性、灵活性特安排了2个练习一个是通过平行线、角平分线判定三角形的形状,再通过线段的转换求图形的周长另一个是一个开放性的问题,考察学生多角度多维度思考问题的能力学生在独立思考的基础上再小组交流1.如图,BD平分∠CBA,CD平分∠ACB,且MN∥BC,设AB=12,AC=18,求△AMN的周长. .2.现有等腰三角形纸片,如果能从一个角的顶点出发,将原纸片一次剪开成两块等腰三角形纸片,问此时的等腰三角形的顶角的度数?第六环节:课堂小结(1)本节课学习了哪些内容?(2)等腰三角形的判定方法有哪几种?(3)结合本节课的学习,谈谈等腰三角形性质和判定的区别和联系.(4)举例谈谈用反证法说理的基本思路第一章 三角形的证明1. 等腰三角形(四)一、学生知识状况分析在前两节课,学生已经经历了独立探索发现定理的过程,并能基本规范地证明相关命题,这些都为本节课进一步探索发现相关定理提供了较好的知识基础和活动经验基础。

      二、教学任务分析本节课,学生将探究等边三角形判定定理和含30°角的直角三角形的性质定理,应该说,这两个定理的证明和探索相对而言,并不复杂,更多的是前面定理的直接运用,因此,本节课可以更多地让学生自主探索但第一个定理证明中,需要分类讨论,因此注意揭示其中的分类思想;第2个定理结论比较特殊,直接从定理条件出发,学生一般难能得到这个结论,因此,教科书中设计了一个学生活动,在活动的基础上“无意”中发现了其特殊的结论,这实际上也是一种数学发现的方法,因此也应注意让学生体会为此,确定本节课的教学目标:1.知识目标理解等边三角形的判别条件及其证明,理解含有30o角的直角三角形性质及其证明,并能利用这两个定理解决一些简单的问题2.能力目标①经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维. ②经历实际操作,探索含。

      点击阅读更多内容
      相关文档
      【初中语文】第二单元测试卷+统编版语文七年级上册.docx 【初中数学】第三章+三视图与表面展开图+同步习题+浙教版数学九年级下册.docx 【初中数学】第4章+图形与坐标+单元检测卷+浙教版数学八年级上册++.docx 【初中数学】因式分解+自主达标测试题+华东师大版八年级数学上册+.docx 【初中语文】第三单元+课外古诗词四首理解性默写+++教师版+学生版+统编版语文九年级上册.docx 【初中语文】第一单元测试卷+统编版语文九年级上册.docx 【初中数学】第二章+直线与圆的位置关系+同步习题+浙教版数学九年级下册.docx 【初中数学】乘法公式+自主学习达标测试题+华东师大版八年级数学上册++.docx 【初中语文】第三单元检测卷+统编版语文八年级上册.docx 广东省茂名市2025年九年级上学期月考物理试题附答案.docx 甘肃省定西市2025年九年级上学期月考物理试题附答案.docx 苏教版(2024)新教材八年级生物上册第五单元第13章第二节《血液循环》提升讲义(含答案).doc 湖南省岳阳市2025年八年级上学期月考物理试题附答案.docx 广东省珠海市2025年八年级上学期第一次月考物理试题附答案.docx 仁爱版(2024)新教材八年级英语上册Unit 3 课时7 Reading for Writing 分层作业.docx 仁爱版(2024)新教材八年级英语上册Unit 3 Sound Body Sound Mind 身心健康(话题阅读精练).docx 山东省潍坊市2025年中考化学真题含同步解析答案.pptx 江苏省盐城市2025年中考物理试卷附同步解析答案.docx 广西河池市2025年九年级上学期月考物理试题附答案.docx 广东省广州市2025年九年级上学期月考物理试题附答案.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.