
中考代数几何-观察归纳综合题.doc
22页中考观察、归纳型问题中考观察、归纳型问题主要通过观察、实验、归纳、类比等活动,探索事物的内在规律,考查学生的逻 辑推理能力,一般以解答题为主.归纳猜想型问题在中考中越来越被命题者所注重.这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展 变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能 与现实情况相吻合,必要时可以进行验证或者证明,以此体现出猜想的实际意义.方法点拨方法点拨观察、归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律.其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程.相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到.考查知识分为两类:①是数字或字母规律探索型问题;②是几何图形中规律探索型问题.1.数式归纳题型特点:通常给定一些数字、代数式、等式或不等式,然后观察猜想其中蕴含的规律,归纳出用某一字母表示的能揭示其规律的代数式或按某些规律写出后面某一项的数或式子.解题策略:一般是先写出数或式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式.2.图形变化归纳题型特点:观察给定图形的摆放特点或变化规律,归纳出下一个图形的摆放特点或变化规律,或者能用某一字母的代数式揭示出图形变化的个数、面积、周长等规律特点.解题策略:多方面、多角度进行观察比较得出图形个数、面积、周长等的通项,再分别取 n=1,2,3…代入验证,都符合时即为正确结论.由于猜想归纳本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点.类型一、数式归纳类型一、数式归纳1.“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出 1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令 S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有 2S=(1+100)×100 解得:S=5050请类比以上做法,回答下列问题:若 n 为正整数,3+5+7+…+(2n+1)=168,则 n=______. 答案与解析 举一反三 【【思路点拨思路点拨】】根据题目提供的信息,列出方程,然后求解即可.【【答案与解析答案与解析】】解:设 S=3+5+7+…+(2n+1)=168①,则 S=(2n+1)+…+7+5+3=168②,①+②得,2S=n(2n+1+3)=2×168,整理得,n2+2n-168=0,解得 n1=12,n2=-14(舍去).故答案为:12.【【总结升华总结升华】】本题考查了有理数的混合运算,读懂题目提供的信息,表示出这列数据的和并列出方程是解题的关键.【变式变式】如下数表是由从 1 开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第 8 行的最后一个数是______,它是自然数______的平方,第 8 行共有______个数;(2)用含 n 的代数式表示:第 n 行的第一个数是______,最后一个数是______,第 n行共有______个数;(3)求第 n 行各数之和.答案与解析 【【答案答案】】(1)64, 8, 15;(2)n2-2n+2, n2, 2n-1;(3).2.课题:两个重叠的正多边形,其中的一个绕着某一顶点旋转所形成的有关问题.实验与论证实验与论证设旋转角∠A1A0B1=α(α<∠A1A0A2),,,,所表示的角如图所示.(1)用含 α 的式子表示角的度数:________,________,________;(2)如上图①~图④中,连结 A0H 时,在不添加其他辅助线的情况下,是否存在与直线 A0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想归纳与猜想设正 n 边形 A0A1A2…与正 n 边形 A0B1B2…重合(其中,A1与 B1重合),现将正n 边形 A0B1B2…绕顶点 A0逆时针旋转.(3)设与上述“,,…”的意义—样,请直接写出的度数;(4)试猜想在正 n 边形的情形下,是否存在与直线 A0H 垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由. 答案与解析 举一反三 【【思路点拨思路点拨】】(1)要求的度数,应从旋转中有关角度的变与不变上突破;(2)结合图形比较容易得到被 A0H 垂直平分的线段,在证明时要充分利用背景中正多边形及旋转中的角度;(3)要探究的度数,要注意区分正偶数边形及正奇数边形两种情形去思考与求解度数的表达式;(4)要探究正 n 边形中被 A0H 垂直平分的线段,也应注意区分正偶数边形及正奇数边形两种情形去思考与突破.【【答案与解析答案与解析】】解:(1),,. (2)存在.下面就所选图形的不同分别给出证明:选图①.图①中有直线 A0H 垂直平分 A2B1(如图所示),证明如下:证法一:证明:∵△A0A1A2与△A0B1B2是全等的等边三角形,∴A0A2=A0B1,∴∠A0A2Bl=∠A0B1A2.又∠A0A2H=∠A0B1H=60°,∴∠HA2Bl=∠HB1A2,∴A2H=B1H,∴点 H 段 A2B1的垂直平分线上.又∵A0A2=A0B1,∴点 A0段 A2B1的垂直平分线上.∴直线 A0H 垂直平分 A2B1.证法二:证明:∵△A0A1A2与△A0B1B2是全等的等边三角形,∴A0A2=A0B1,∴∠A0A2B1=∠A0BlA2.又∠A0A2H=∠A0B1H,∴∠HA2Bl=∠HB1A2.∴HA2=HB1.在△A0A2H 与△A0B1H 中,∵A0A2=A0B,HA2=HB1,∠A0A2B=∠A0B1H,∴△A0A2H≌△A0B1H,∴∠A2A0H=∠B1A0H,∴A0H 平分等腰三角形 A0A2B1的顶角∠A2A0B1,∴直线 A0H 垂直平分 A2B1. 选图②.图②中有直线 A0H 垂直平分 A2B2(如图所示),证明如下:∵A0B2=A0A2,∴∠A0B2A2=∠A0A2B2.又∵∠A0B2B1=∠A0A2A3=45°,∴∠HB2A2=∠HA2B2,∴HB2=HA2,∴点 H 段 A2B 的垂直平分线上.又∵A0B2=A0A2,∴点 A0段 A2B2的垂直平分线上.∴直线 A0H 垂直平分 A2B2.(3)当 n 为奇数时,当 n 为偶数时,.(4)存在.当 n 为奇数时,直线 A0H 垂直平分;当 n 为偶数时,直线 A0H 垂直平分.【【总结升华总结升华】】本题考查由特殊到一般推理论证的能力,属较难题,具有较强的逻辑推理能力及演绎推理意识是解决问题的关键。
变式变式】长为 20,宽为 a 的矩形纸片(10<a<20),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第 n 次操作后,剩下的矩形为正方形,则操作停止.当 n=3 时,a 的值为______.答案与解析 【【答案答案】】解:由题意,可知当 10<a<20 时,第一次操作后剩下的矩形的长为 a,宽为 20-a,所以第二次操作时正方形的边长为 20-a,第二次操作以后剩下的矩形的两边分别为 20-a,2a-20.此时,分两种情况:①如果 20-a>2a-20,即 a<40,那么第三次操作时正方形的边长为 2a-20.则 2a-20=(20-a)-(2a-20),解得 a=12;②如果 20-a<2a-20,即 a>,那么第三次操作时正方形的边长为 20-a.则 20-a=(2a-20)-(20-a),解得 a=15.∴当 n=3 时,a 的值为 12 或 15.故答案为:12 或 15. 3.用 4 个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图 1,用 n 个全等的正六边形按这种方式进行拼接,如图 2,若围成一圈后中间形成一个正多边形,则 n 的值为______.答案与解析 举一反三 【【思路点拨思路点拨】】根据正六边形的一个内角为 120°,可求出正六边形密铺时需要的正多边形的内角,继而可求出这个正多边形的边数.【【答案与解析答案与解析】】解:两个正六边形结合,一个公共点处组成的角度为 240°,故如果要密铺,则需要一个内角为 120°的正多边形而正六边形的内角为 120°,故答案为:6.【【总结升华总结升华】】此题考查了平面密铺的知识,解答本题关键是求出在密铺条件下需要的正多边形的一个内角的度数,有一定难度 【变式变式】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第(是大于 0 的整数)个图形需要黑色棋子的个数是______.答案与解析 【【答案答案】】第 1 个图形是 2×3-3,第 2 个图形是 3×4-4,第 3 个图形是 4×5-5,按照这样的规律摆下去,则第 n 个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2) = n2+2n.或或第 n 个图形是 n+2 边形,每条边上有 n+1 个点,共有 n+2 个顶点,每个顶点上的黑子都被两条边重复计算;所以,第 n 个图形需要摆放 (n+1)(n+2)-(n+2) = n2+2n 个黑子.答案:第 n 个图形需要黑色棋子的个数是 n2+2n.类型三、数值、数量结果归纳类型三、数值、数量结果归纳4.已知在平面直角坐标系中放置了 5 个如图所示的正方形(用阴影表示),点 B1在y 轴上,点 C1、E1、E2、C2、E3、E4、C3在 x 轴上.若正方形 A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点 A3到 x 轴的距离是( )A. B. C. D. 答案与解析 【【思路点拨思路点拨】】利用正方形的性质以及平行线的性质分别得出 D1E1=B2E2= ,B2C2=,进而得出 B3C3=,求出 WQ= × = ,FW=WA3.cos30°= ×=,即可得出答案.【【答案与解析答案与解析】】解:过小正方形的一个顶点 W 作 FQ⊥x 轴于点 Q,过点 A3F⊥FQ 于点 F,∵正方形 A1B1C1D1的边长为 1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴∠B3C3 E4=60°,∠D1C1E1=30°,∠E2B2C2=30°,∴D1E1= D1C1= ,∴D1E1=B2E2= ,∴cos30°==,解得:B2C2=,∴B3E4=,cos30°=,解得:B3C3= ,则 WC3= ,根据题意得出:∠WC3 Q=30°,∠C3 WQ=60°,∠A3 WF=30°,∴WQ= × = ,FW=WA3•cos30°= ×=,则点 A3到 x 轴的距离是:FW+WQ= +=,故选:D.【【总结升华总结升华】】此题主要考查了正方形的性质以及锐角三角函数的应用等知识,根据已知得出 B3C3的长是解题关键. 类型四、数形归纳类型四、数形归纳5.如图,在标有刻度的直线 l 上,从点 A 开始,以 AB=1 为直径画半圆,记为第 1 个半圆;以 BC=2 为直径画半圆,记为第 2 个半圆;以 CD=4 为直径画半圆,记为第 3 个半圆;以 DE=8 为直径画半圆,记为第 4 个半圆,…按此规律,继续画半圆,则第 4 个半圆的面积是第 3 个半圆面积的______倍,第 n个半圆的面积为______(结果保留 π)答案与解析 【【思路点拨思路点拨】】根据已。












