
人教版数学九年级下册同步讲义第7课相似多边形及位似(教师版).doc
15页第7课 相似多边形及位似目标导航课程标准1、掌握相似多边形的性质及应用;2、了解图形的位似,知道位似变换是特殊的相似变换,能利用位似的方法,将一个图形放大或缩小;3、了解黄金分割值及相关运算.知识精讲知识点01 相似多边形相似多边形的性质:(1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.要点诠释:用相似多边形定义判定特殊多边形的相似情况:(1)对应角都相等的两个多边形不一定相似,如:矩形;(2)对应边的比都相等的两个多边形不一定相似,如:菱形;(3)边数相同的正多边形都相似,如:正方形,正五边形.知识点02 位似1.位似图形定义: 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.2.位似图形的性质:(1)位似图形的对应点和位似中心在同一条直线上; (2) 位似图形的对应点到位似中心的距离之比等于相似比; (3)位似图形中不经过位似中心的对应线段平行.要点诠释:(1)位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.(2)位似变换中对应点的坐标变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.3. 平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4. 作位似图形的步骤 第一步:在原图上找若干个关键点,并任取一点作为位似中心; 第二步:作位似中心与各关键点连线; 第三步:在连线上取关键点的对应点,使之满足放缩比例; 第四步:顺次连接各对应点. 要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.知识点02 黄金分割位似和黄金分割 定义:如图,将一条线段AB分割成大小两条线段AP、PB,若小段与大段的长度之比等于大段的长度与全长之比,即(此时线段AP叫作线段PB、AB的比例中项),则P点就是线段AB的黄金分割点(黄金点),这种分割就叫黄金分割.要点诠释:1.黄金分割值:设AB=1,AP=x,则BP= ∵∴ ∴ ∴(舍负)2.黄金三角形:顶角为36°的等腰三角形,它的底角为72°,恰好是顶角的2倍,人们称这种三角形为黄金三角形.黄金三角形性质:底角平分线将其腰黄金分割.能力拓展考法01 相似多边形【典例1】如图,矩形草坪长20m,宽16m,沿草坪四周有2m宽的环形小路,小路内外边缘所形成的两个矩形相似吗?为什么?ABCDEFGH【答案与解析】因为矩形的四个角都是直角,所以关键是看矩形ABCD与矩形EFGH的对应边的比是否相等.,而,∴∴矩形ABCD与矩形EFGH的对应边的比不相等,因而它们不相似.【总结升华】两个边数相同的多边形,必须同时满足“对应边的比都相等,对应角都相等”这两个条件才能相似,缺一不可.【即学即练1】如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:b=( )A. 2:1 B. :1 C. 3: D. 3:2【答案】B.提示: ∵矩形纸片对折,折痕为EF,∴AF=AB=a,∵矩形AFED与矩形ABCD相似,∴=,即=,∴()2=2,∴=.故选B.【典例2】如图,在长8cm,宽4cm 的矩形中截去一个矩形,使留下的矩形(阴影部分)与原矩形相似,那么留下的矩形的面积为( ). A. 2cm B. 4cm C. 8cm D. 16cm【答案】C.【解析】设留下的矩形的宽为x,∵留下的矩形与原矩形相似,∴,∴x=2,∴留下的矩形的面积为:2×4=8(cm2)故答案为:8.故选C. 【总结升华】本题主要考查了相似多边形的性质,在解题时要能根据相似多边形的性质列出方程是本题的关键.考法02 位似【典例3】利用位似图形的方法把五边形ABCDE放大1.5倍.ABCDEA1B1C1D1E1【答案与解析】即是要画一个五边形A′B′C′D′E′,要与五边形ABCDE相似且相似比为1.5. ABCDE 画法是: 1.在平面上任取一点O. 2.以O为端点作射线OA、OB、OC、OD、OE.3.在射线OA、OB、OC、OD、OE上分别取点A′、B′、C′、D′、E′,使OA′:OA= OB′:OB=OC′:OC=OD′:OD=OE′:OE=1.5. 4.连结A′B′、B′C′、C′D′、D′E′、E′A′.这样:=====1.5. 则五边形A′B′C′D′E′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧.【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小.【典例4】如图,矩形OABC的顶点坐标分别为O(0,0),A(6,0),B(6,4),C(0,4).画出以点O为位似中心,矩形OABC的位似图形OA ′ B ′ C ′ ,使它的面积等于矩形OABC面积的,并分别写出A′、B′、C′三点的坐标.【答案与解析】因为矩形OA′B′C′与矩形OABC是位似图形,面积比为1:4,所以它们的位似比为1:2. 连接OB,(1)分别取线段OA、OB、OC的中点A′、B′、C′,连接O A′、A′B′、B′C′、 C′O,矩形OA′B′C′就是所求的图形. A′,B′,C′三点的坐标分别为A′(3,0),B′(3,2),C′(0,2).(2)分别段OA,OB,OC的反向延长线上截取O A″、O B″、O C″,使OA″=OA,OB″=OB,O C″=OC,连接 A″B″、B″C″,则矩形O A″B″C″为所求.A″、B″、C″三点的坐标分别为A″(-3,0),B″(-3,-2),C″(0,-2). 【总结升华】平面直角坐标系内画位似图形,若没有明确指出只画一个,一定要把两种情况都画在坐标系内,并写出两种坐标.【即学即练2】在已知三角形内求作内接正方形.【答案】作法:(1)在AB上任取一点G′,作G′D′⊥BC;(2)以G′D′为边,在△ABC内作一正方形D′E′F′G′;(3)连接BF′,延长交AC于F;(4)作FG∥CB,交AB于G,从F、G分别作BC的垂线FE, GD;∴四边形DEFG即为所求.考法02 黄金分割【典例5】求做黄金矩形(写出具体做题步骤)并证明.【答案与解析】宽与长的比是的矩形叫黄金矩形.(心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.)黄金矩形的作法如下(如图所示):第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;第四步:过E作EF⊥AD,交AD的延长线于F.即矩形DCEF为黄金矩形.证明:在正方形ABCD中,取,∵ N为BC的中点,ABCDEFMN∴ . 在中,.又∵ ,∴ .∴ .故矩形DCEF为黄金矩形.【总结升华】要求熟练掌握多边形相似的比例关系.会利用相似比,求未知线段的长度或比值.【即学即练3】美是一种感觉,当人的肚脐是人的身高的黄金分割点时,人的下半身长与身高之比约为0.618,人的身段成为黄金比例,给人一种美感.某女士身高165cm,下半身长与身高的比值是0.60,为尽可能达到匀称的效果,她应穿高跟鞋的高度大约为( )A.4cm B.5cm C.6cm D.8cm【答案】D.∵该女士身高165cm,下半身长与身高的比值是0.60,∴此女士下半身长是165×0.60=99cm,设需要穿的高跟鞋是xcm,根据黄金分割的定义得: 0.618, 解得:x≈8. 故选D.目标导航题组A 基础过关练1.下面给出了相似的一些命题:(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相 似;(5)正六边形都相似;其中正确的有( )A.2个 B.3个 C.4个 D.5个【答案】B【解析】(1)菱形的角不一定对应相等,故错误;(2)(3)(5)符合相似的定义,故正确;(4)对应边的比不一定相等.故错误. 故正确的是:(2)(3)(5).故选B.2.下列说法错误的是( ). A.位似图形一定是相似图形.B.相似图形不一定是位似图形. C.位似图形上任意一对对应点到位似中心的距离之比等于相似比. D.位似图形中每组对应点所在的直线必相互平行.【答案】D.3.下列说法正确的是( ) A.分别在ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则ADE 是ABC放大后的图形. B.两位似图形的面积之比等于相似比. C.位似多边形中对应对角线之比等于相似比. D.位似图形的周长之比等于相似比的平方.【答案】C.4.平面直角坐标系中,有一条“鱼,它有六个顶点”,则( ) A.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似. B.将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似. C.将各点横、纵坐标都乘以2,得到的鱼与原来的鱼位似. D.将各点横坐标乘以2,纵坐标乘以,得到的鱼与原来的鱼位似.【答案】C.5.如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是( )A. 10 B. 12 C. D. 【答案】C. 【解析】∵四边形ABCD∽四边形A1B1C1D1,∴=,∵AB=12,CD=15,A1B1=9,∴C1D1==.6.如果点C为线段AB的黄金分割点,且AC>BC,则下列各式不正确的是( )A. AB:AC=AC:BC B. AC= C.AB= D.BC≈0.618AB【答案】D.【解析】∵AC>BC,∴AC是较长的线段, 根据黄金分割的定义可知:AB:AC=AC:BC,AC=, AB=AC≈0.618AB.故选D.7.已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=( )A. B. C. D.2【答案】B.【解析】∵AB=1,设AD=x,则FD=x-1,FE=1,∵四边形EFDC与矩形ABCD相似,∴, ,解得,,(负值舍去),经检验是原方程的解.故选。












