
立体几何知识点总结4000字.docx
23页立体几何知识点总结4000字 高中数学第九章-立体几§棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:S?Ch(C为底面周长,h是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:S?C1l(C1是斜棱柱直截面周长,l是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑵{四棱柱}?{平行六面体}?{直平行六面体}?{长方体}?{正四棱柱}?{正方体}. {直四棱柱}?{平行六面体}={直平行六面体}.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形;正........棱柱的各个侧面都是全等的矩形. .....②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形. ..③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.⑷平行六面体:定理一:平行六面体的对角线交于一点,并且在交点处互相平分. .............[注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和. 推论一:长方体一条对角线与同一个顶点的三条棱所成的角为?,?,?,则co2s??co2s??co2s??1.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为?,?,?,则222cos??cos??cos??2.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直棱柱才行) .③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直.(两条1 高中数学高考总复习 高三数学总复习九—立体几何 — —边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以V棱柱?Sh?3V棱柱.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形.②正棱锥的侧面积:S?1Ch'(底面周长为C,斜高为h') 2③棱锥的侧面积与底面积的射影公式:S侧?S底cos?(侧面与底面成的二面角为?) 附: c 以知c⊥l,cos??a?b,?为二面角a?l?b. 则S1?S侧?S底11a?l①,S2?l?b②,cos??a?b③ 22?①②③得. cos?注:S为任意多边形的面积(可分别多个三角形的方法).⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心. ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直2 高中数学高考总复习 高三数学总复习九—立体几何简证:AB⊥CD,AC⊥BD? BC⊥AD. 令AB?a,AD?c,AC?b 得BC?AC?AB?b?a,AD?c?BC?AD?bc?ac,已知a?c?b?0,b?a?c?0?ac?bc?0则BC?AD?0.??iii. 空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形. iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形. 简证:取AC中点O',则oo??AC,BO??AC?AC?平面OO?B?AC?BO??FGH?90°易知EFGH为平行四边形?EFGH为长方形.若对角线等,则EF?FG?EFGH为正方形. D3. 球:⑴球的截面是一个圆面. ①球的表面积公式:S?4?R2.4②球的体积公式:V??R3.3EFAO'C⑵纬度、经度: B①纬度:地球上一点P的纬度是指经过P点的球半径与赤道面所成的角的度数.②经度:地球上A,B两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点AB点的经度.附:①圆柱体积:V??r2h(r为半径,h为高)1②圆锥体积:V??r2h(r为半径,h为高)31③锥形体积:V?Sh(S为底面积,h为高)3O4. ①内切球:当四面体为正四面体时,设边长为a,h?得22a,S底?a,?a 344262122426a?a?a?R??a?R?R?a/3?a??a. 434344344RO11注:球内切于四面体:VB?ACD??S侧?R?3?S底?R?S底?h33②外接球:球外接于正四面体,可如图建立关系式.立体几何知识要点一、知识提纲(一)空间的直线与平面⒈平面的基本性质 ⑴三个公理及公理三的三个推论和它们的用途. ⑵斜二测画法. ⒉空间两条直线的位置关系:相交直线、平行直线、异面直线. ⑴公理四(平行线的传递性).等角定理.3 高中数学高考总复习 高三数学总复习九—立体几何 — —⑵异面直线的判定:判定定理、反证法.⑶异面直线所成的角:定义(求法)、范围.⒊直线和平面平行 直线和平面的位置关系、直线和平面平行的判定与性质. ⒋直线和平面垂直⑴直线和平面垂直:定义、判定定理.⑵三垂线定理及逆定理.5.平面和平面平行两个平面的位置关系、两个平面平行的判定与性质.6.平面和平面垂直互相垂直的平面及其判定定理、性质定理.(二)直线与平面的平行和垂直的证明思路(见附图)(三)夹角与距离7.直线和平面所成的角与二面角⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平 面所成的角、直线和平面所成的角.⑵二面角:①定义、范围、二面角的平面角、直二面角.②互相垂直的平面及其判定定理、性质定理.8.距离⑴点到平面的距离.⑵直线到与它平行平面的距离.⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.⑷异面直线的距离:异面直线的公垂线及其性质、公垂线段.(四)简单多面体与球9.棱柱与棱锥⑴多面体.⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、 正方体;平行六面体的性质、长方体的性质.⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.⑸直棱柱和正棱锥的直观图的画法.10.多面体欧拉定理的发现⑴简单多面体的欧拉公式.⑵正多面体.11.球⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离.⑵球的体积公式和表面积公式.二、常用结论、方法和公式8.正棱锥的各侧面与底面所成的角相等,记为?,则S侧cos?=S底;10.正方体和长方体的外接球的直径等与其体对角线长;4 高中数学高考总复习 高三数学总复习九—立体几何 — —12.柱体的体积公式:柱体(棱柱、圆柱)的体积公式是V柱体=Sh.其中S是柱体的底面积,h是柱体的高.13.直棱柱的侧面积和全面积S直棱柱侧= c? (c表示底面周长,?表示侧棱长) S棱柱全=S底+S侧14.棱锥的体积:V棱锥=1Sh,其中S是棱锥的底面积,h是棱锥的高。
3215.球的体积公式V=?R3,表面积公式S?4?R;掌握球面上两点A、B间的距离求法:(1)计算线段AB的长,(2)计算球心角∠AOB的弧度数;(3)用弧长公式计算劣弧AB的长;435 高中数学高考总复习 高三数学总复习九—立体几何 — —第二篇:高中立体几何知识点总结 6700字高中立体几何知识点总结(覆盖高中阶段所有推论及细节)高考复习科目:数学 高中数学总复习(九) 复习内容:高中数学第九章-立体几何复习范围:第九章I. 基础知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有个.4. 三个平面最多可把空间分成部分.(X、Y、Z三个方向) 二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线(×).(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a、b异面,a平行于平面 ,b与 的关系是相交、平行、在平面 内.④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点向这个平面所引的垂线段和斜线段)⑦ 是夹在两平行平面间的线段,若 ,则 的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围 )(直线与直线所成角 )(斜线与平面成角 )(直线与平面所成角 )(向量与向量所成角推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.是异面直线,则过 外一点P,过点P且与 都平行平面有一个或没有,但与 距离相等的点在同一平面内. ( 或 在这个做出的平面内不能叫 与 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直。
