
2025学年山东省滨州市邹平双语学校三区数学高二上期末达标检测模拟试题含解析.doc
17页2025学年山东省滨州市邹平双语学校三区数学高二上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上用2B铅笔将试卷类型(B)填涂在答题卡相应位置上将条形码粘贴在答题卡右上角"条形码粘贴处"2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案答案不能答在试题卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液不按以上要求作答无效4.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知椭圆的右焦点和右顶点分别为F,A,离心率为,且,则n的值为( )A.4 B.3C.2 D.2.已知函数在处的导数为,则( )A. B.C. D.3.已知空间向量,,,若,,共面,则m+2t=()A.-1 B.0C.1 D.-64.某学校高二级选择“史政地”“史政生”和“史地生”组合的同学人数分别为240,120和60.现采用分层抽样的方法选出14位同学进行一项调查研究,则“史政生”组合中选出的人数为()A.8 B.6C.4 D.35.小方每次投篮的命中率为,假设每次投篮相互独立,则他连续投篮2次,恰有1次命中的概率为()A. B.C. D.6.某学生2021年共参加10次数学竞赛模拟考试,成绩分别记为,,,…,,为研究该生成绩的起伏变化程度,选用一下哪个数字特征最为合适( )A.,,,…,的平均值; B.,,,…,的标准差;C.,,,…,的中位数; D.,,,…,的众数;7.定义在R上的偶函数在上单调递增,且,则满足的x的取值范围是()A. B.C. D.8.已知点分别为圆与圆的任意一点,则的取值范围是( )A. B.C. D.9.过点且垂直于直线的直线方程是()A. B.C. D.10.已知,若,则( )A. B.C. D.11.已知两圆相交于两点,,两圆圆心都在直线上,则值为()A. B.C. D.12.若直线与圆相交于、两点,且(其中为原点),则的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.已知椭圆的左、右焦点分别为,,过点的直线与椭圆交于A,B两点,线段AB的长为5,若,那么△的周长是______.14.已知等差数列的公差,等比数列的公比q为正整数,若,,且是正整数,则______15.已知圆的圆心与点关于直线对称,直线与圆相交于、两点,且,则圆的方程为_________16.设集合,把集合中的元素按从小到大依次排列,构成数列,求数列的前项和___三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)如图,在四棱锥中,底面ABCD为直角梯形,,平面ABCD,,.(1)求点B到平面PCD的距离;(2)求二面角的平面角的余弦值.18.(12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马中,侧棱底面,且,过棱的中点,作交于点,连接(1)证明:.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)记阳马的体积为,四面体的体积为,求的值;(3)若面与面所成二面角的大小为,求的值19.(12分)如图,在正四棱锥中,为底面中心,,为中点,(1)求证:平面;(2)求:(ⅰ)直线到平面的距离;(ⅱ)求直线与平面所成角的正弦值20.(12分)已知函数,曲线y=f(x)在点(0,4)处的切线方程为(1)求a,b的值;(2)求f(x)的极大值21.(12分)已知函数为常数,函数.(1)讨论函数的单调性;(2)若函数的图象与直线相切,求实数的值;(3)当时,在上有两个极值点且恒成立,求实数的取值范围.22.(10分)已知等差数列公差不为0,且成等比数列.(1)求数列的通项公式及其前n项和;(2)记,求数列的前n项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、B【解析】根据椭圆方程及其性质有,求解即可.【详解】由题设,,整理得,可得.故选:B2、C【解析】利用导数的定义即可求出【详解】故选:C3、D【解析】根据向量共面列方程,化简求得.【详解】,所以不共线,由于,,共面,所以存在,使,即,,,,,即.故选:D4、C【解析】根据题意求得抽样比,再求“史政生”组合中抽取的人数即可.【详解】根据题意,分层抽样的抽样比为,故从“史政生”组合120中,抽取的人数时人.故选:.5、A【解析】先弄清连续投篮2次,恰有1次命中的情况有两种,它们是互斥关系,因此根据相互独立事件以及互斥事件的概率计算公式进行求解.【详解】由题意知,他连续投篮2次,有两种互斥的情况,即第一次投中第二次不中和第一次不中第二次投中,因此恰有1次命中的概率为,故选:A.6、B【解析】根据平均数、标准差、中位数及众数的概念即得.【详解】根据平均数、中位数、众数的概念可知,平均数、中位数、众数描述数据的集中趋势,标准差描述数据的波动大小估计数据的稳定程度.故选:B.7、B【解析】,再根据函数的奇偶性和单调性可得或,解之即可得解.【详解】解:,由题意可得或即或,解得或故选:B.8、B【解析】先判定两圆的位置关系为相离的关系,然后利用几何方法得到的取值范围.【详解】的圆心为,半径,的圆心为,半径,圆心距,∴两圆相离,∴,故选:B.9、A【解析】根据所求直线垂直于直线,设其方程为,然后将点代入求解.【详解】因为所求直线垂直于直线,所以设其方程为,又因为直线过点,所以,解得所以直线方程为:,故选:A.10、B【解析】先求出的坐标,然后由可得,再根据向量数量积的坐标运算求解即可.【详解】因为,,所以,因为,所以,即,解得.故选:B11、A【解析】由相交弦的性质,可得与直线垂直,且的中点在这条直线上;由与直线垂直,可得,解可得的值,即可得的坐标,进而可得中点的坐标,代入直线方程可得;进而将、相加可得答案【详解】根据题意,由相交弦的性质,相交两圆的连心线垂直平分相交弦,可得与直线垂直,且的中点在这条直线上;由与直线垂直,可得,解可得,则,故中点为,且其在直线上,代入直线方程可得,1,可得;故;故选:A【点睛】方法点睛:解答圆和圆的位置关系时,要注意利用平面几何圆的知识来分析解答.12、D【解析】分析出为等腰直角三角形,可得出原点到直线的距离,利用点到直线的距离公式可得出关于的等式,由此可解得的值.【详解】圆的圆心为原点,由于且,所以,为等腰直角三角形,且圆心到直线的距离为,由点到直线的距离公式可得,解得.故选:D.【点睛】关键点点睛:本题考查利用圆周角求参数,解题的关键在于求出弦心距,再利用点到直线的距离公式列方程求解参数.二、填空题:本题共4小题,每小题5分,共20分。
13、16【解析】利用椭圆的定义可知,又△的周长,即可求焦点三角形的周长.【详解】由椭圆定义知:,所以△的周长为.故答案为:16.14、【解析】由已知等差、等比数列以及,,是正整数,可得,结合q为正整数,进而求.【详解】由,,令,其中m为正整数,有,又为正整数,所以当时,解得,当时,解得不是正整数,故答案为:15、【解析】利用对称条件求出圆心C的坐标,借助直线被圆所截弦长求出圆半径即可写出圆的方程.【详解】设圆的圆心,依题意,,解得,即圆心,点C到直线的距离,因圆截直线所得弦AB长为6,于是得圆C的半径所以圆的方程为:.故答案为:16、【解析】由等差数列和等比数列的通项公式,可得,由不在集合中,在集合中,也在集合中,推得不在数列的前50项内,则数列的前50项中包括的前48项和数列中的3和27,结合等差数列的求和公式,即可求解.【详解】由题意,集合构成数列是首项为1,公差为4的等差数列,集合构成数列是首项为1,公比为3的等比数列,可得,又由不在集合中,在集合中,也在集合中,因为,解得,此时,所以不在数列的前50项内,则数列的前50项的和为.故答案为:.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤。
17、(1)(2)【解析】(1)建立空间直角坐标系,用点到面的距离公式即可算出答案;(2)先求出两个面的法向量,然后用二面角公式即可.【小问1详解】∵平面平面∴又两两互相垂直 ,所以,以点为坐标原点,分别为轴,轴,轴建立如图所示的空间直角坐标系,D ( 3 , 6 , 0 ) , A ( 0 , 6 , 0 )设平面的一个法向量所以即令,可得记点到平面的距离为,则【小问2详解】由 ( 1 ) 可知平面的一个法向量为平面的一个法向量为设二面角的平面角为由图可知,18、(1)证明见解析,是鳖臑,四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB(2)4(3)【解析】(1)由直线与直线,直线与平面的垂直的转化证明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判断DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,确定直角即可;(2)PD是阳马P−ABCD的高,DE是鳖臑D−BCE的高,BC⊥CE,,由此能求出的值(3)根据公理2得出DG是平面DEF与平面ACBD的交线.利用直线与平面的垂直判断出DG⊥DF,DG⊥DB,根据平面角的定义得出∠BDF是面DEF与面ABCD所成二面角的平面角,转化到直角三角形求解即可【小问1详解】因为PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE⊂平面PDC,所以BC⊥DE又因为PD=CD,点E是PC的中点,所以DE⊥PC而PC∩CB=C,所以DE⊥平面PBC.而PB⊂平面PBC,所以PB⊥DE又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB;【小问2详解】由已知,PD是阳马P−ABCD的高,∴,由(Ⅰ)知,,在Rt△PDC中,∵PD=CD,点E是PC的中点,∴,∴【小问3详解】如图所示,在面BPC内,延长BC与FE交于点G,则DG是平面DEF与平面ABCD的交线由(1)知,PB⊥平面DEF,所以PB⊥DG又因为PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD所以DG⊥DF,DG⊥DB故∠BDF是面DEF与面ABCD所成二面角的平面角,设PD=DC=1,BC=λ,有,在Rt△PDB中,。





![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)






