
自控原理实验讲义.docx
28页自动控制理论部分实验一 典型环节的电路模拟与软件仿真研究一.实验目的1.通过实验熟悉并掌握实验装置和上位机软件的使用方法2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法二.实验内容1.设计各种典型环节的模拟电路2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响3.在MATLAB软件上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较三.实验步骤1.熟悉实验箱,利用实验箱上的模拟电路单元,设计并连接各种典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路接线时要注意:先断电,再接线接线时要注意不同环节、不同测试信号对运放锁零的要求U3单元的O1接被测对象的输入、G接G1、U3单元的I1接被测对象的输出)2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响首先必须在熟悉上位机界面的操作,充分利用上位机提供的虚拟示波器与信号发生器功能为了利用上位机提供的虚拟示波器与信号发生器功能接线完成,经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。
软件界面上的操作步骤如下:①按通道接线情况:通过上位机界面中“通道选择” 选择I1、I2路A/D通道作为被测环节的检测端口,选择D/A通道的O1(“测试信号1”)作为被测对象的信号发生端口.不同的通道,图形显示控件中波形的颜色将不同②硬件接线完毕后,检查USB口通讯连线和实验箱电源后,运行上位机软件程序,如果有问题请求指导教师帮助③进入实验模式后,先对显示模式进行设置:选择“X-t模式”;选择“T/DIV”为1s/1HZ④完成上述实验设置,然后设置实验参数,在界面的右边可以设置系统测试信号参数,选择“测试信号”为“周期阶跃信号”,选择“占空比”为50%,选择“T/DIV”为“1000ms”, 选择“幅值”为“3V”,可以根据实验需要调整幅值,以得到较好的实验曲线,将“偏移”设为“0”以上除必须选择“周期阶跃信号”外,其余的选择都不是唯一的要特别注意,除单个比例环节外,对其它环节和系统都必须考虑环节或系统的时间常数,如仍选择“输入波形占空比”为50%,那么“T/DIV”至少是环节或系统中最大时间常数的6~8倍这样,实验中才能观测到阶跃响应的整个过程⑤以上设置完成后,按LabVIEW上位机软件中的 “RUN”运行图标来运行实验程序,然后点击右边的“启动/停止”按钮来启动实验,动态波形得到显示,直至周期响应过程结束,如上述参数设置合理就可以在主界面图形显示控件中间得到环节的“阶跃响应”。
⑥利用LabVIEW软件中的图形显示控件中光标“Cursor”功能观测实验结果;改变实验箱上环节参数,重复⑤的操作;如发现实验参数设置不当,看不到“阶跃响应”全过程,可重复④、⑤的操作⑦按实验报告需要,将图形结果保存为位图文件3.分析实验结果,完成实验报告四.附录1.比例(P)环节的传递函数、方块图、模拟电路和阶跃响应比例环节的传递函数为:其方块图、模拟电路和阶跃响应,分别如图1.1.1、图1.1.2和图1.1.3所示,于是 实验参数取R0=100k,R1=200k,R=10k实验接线如下图:2.积分(I)环节的传递函数、方块图、模拟电路和阶跃响应积分环节的传递函数为: 其方块图、模拟电路和阶跃响应,分别如图1.2.1、图1.2.2和图1.2.3所示,于是, 实验参数取R0=100k,C=1uF,R=10k实验接线如下图:3.比例积分(PI)环节的传递函数、方块图、模拟电路和阶跃响应比例积分环节的传递函数为:其方块图、模拟电路和阶跃响应,分别如图1.3.1、图1.3.2和图1.3.3所示,于是,4.比例微分(PD)环节的传递函数、方块图、模拟电路和阶跃响应比例微分环节的传递函数为: 其方块图和模拟电路分别如图1.4.1、图1.4.2所示。
其模拟电路是近似的(即实际PD环节),取,则有,实验参数取R0=10k,R1=10k,R2=10k,R3=1K,C=10uF,R=10k对应理想的和实际的比例微分(PD)环节的阶跃响应分别如图1.4.3a、图1.4.3b所示实际PD环节的传递函数为: (供软件仿真参考)实验接线如下图:5.惯性环节的传递函数、方块图、模拟电路和阶跃响应惯性环节的传递函数为: 实验接线如下图:其方块图、模拟电路和阶跃响应,分别如图1.5.1、图1.5.2和图1.5.3所示,其中,实验参数取R0=200k,R1=200k,C=1uF,R=10k6.比例积分微分(PID)环节的传递函数、方块图、模拟电路和阶跃响应比例积分微分环节的传递函数为: 其方块图和模拟电路分别如图1.6.1、图1.6.2所示其模拟电路是近似的(即实际PID环节),取,将近似上述理想PID环节有,实验参数取R0=200k,R1=100k,R2=10k,R3=1k,C1=1uF,C2=10uF,R=10k对应理想的和实际的比例积分微分(PID)环节的阶跃响应分别如图1.6.3 a、图1.6.3 b所示实际PID环节的传递函数为:(供软件仿真参考)实验接线如下图:实验二 典型系统动态性能和稳定性分析一.实验目的1.学习和掌握动态性能指标的测试方法。
2.研究典型系统参数对系统动态性能和稳定性的影响二.实验内容1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响2.观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响三.实验步骤1.熟悉实验箱,利用实验箱上的模拟电路单元,参考本实验附录中的图2.1.1和图2.1.2,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路(如用U9、U15、U11和U8连成)注意实验接线前必须对运放仔细调零(出厂已调好,无需调节)信号输出采用U3单元的O1、信号检测采用U3单元的I1、锁零接U3单元的G12.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间3.改变该二阶系统模拟电路的参数,观测参数对系统动态性能的影响4.利用实验箱上的模拟电路单元,参考本实验附录中的图2.2.1和图2.2.2,设计并连接由一个积分环节和两个惯性环节组成的三阶闭环系统的模拟电路(如用U9、U15、U11、U10和U8连成)5.利用实验设备观测该三阶系统模拟电路的阶跃特性,并测出其超调量和调节时间6.改变该三阶系统模拟电路的参数,观测参数对系统稳定性与动态指标的影响。
7.分析实验结果,完成实验报告软件界面上的操作步骤如下:①按通道接线情况:通过上位机界面中“通道选择” 选择I1、I2路A/D通道作为被测环节的检测端口,选择D/A通道的O1(“测试信号1”)作为被测对象的信号发生端口.不同的通道,图形显示控件中波形的颜色将不同②硬件接线完毕后,检查USB口通讯连线和实验箱电源后,运行上位机软件程序,如果有问题请求指导教师帮助③进入实验模式后,先对显示模式进行设置:选择“X-t模式”;选择“T/DIV”为1s/1HZ④完成上述实验设置,然后设置实验参数,在界面的右边可以设置系统测试信号参数,选择“测试信号”为“周期阶跃信号”,选择“占空比”为50%,选择“T/DIV”为“1000ms”, 选择“幅值”为“3V”,可以根据实验需要调整幅值,以得到较好的实验曲线,将“偏移”设为“0”以上除必须选择“周期阶跃信号”外,其余的选择都不是唯一的要特别注意,除单个比例环节外,对其它环节和系统都必须考虑环节或系统的时间常数,如仍选择“输入波形占空比”为50%,那么“T/DIV”至少是环节或系统中最大时间常数的6~8倍这样,实验中才能观测到阶跃响应的整个过程⑤以上设置完成后,按LabVIEW上位机软件中的 “RUN”运行图标来运行实验程序,然后点击右边的“启动/停止”按钮来启动实验,动态波形得到显示,直至周期响应过程结束,如上述参数设置合理就可以在主界面图形显示控件中间得到环节的“阶跃响应”。
⑥利用LabVIEW软件中的图形显示控件中光标“Cursor”功能观测实验结果;改变实验箱上环节参数,重复⑤的操作;如发现实验参数设置不当,看不到“阶跃响应”全过程,可重复④、⑤的操作⑦按实验报告需要,将图形结果保存为位图文件3.分析实验结果,完成实验报告四.附录1.典型二阶系统典型二阶系统的方块结构图如图2.1.1所示:其开环传递函数为, 其闭环传递函数为,其中, 取二阶系统的模拟电路如图2.1.2所示,调节Rx分析二阶系统的三种情况: 该系统的阶跃响应如图2.1.3所示:Rx接分立元器件单元的1M电位器(或200K电位器),改变元件参数Rx大小,研究不同参数特征下的时域响应2.1.3a,2.1.3b,2.1.3c分别对应二阶系统在过阻尼,临界阻尼,欠阻尼三种情况下的阶跃响应曲线:2.典型三阶系统典型三阶系统的方块结构图如图2.2.1所示:其开环传递函数为,其中,取三阶系统的模拟电路如图2.2.2所示:该系统开环传递函数为,,Rx的单位为KW系统特征方程为,根据劳斯判据得到:系统稳定 0
该系统的阶跃响应如图2.2.3 a、2.2.3b 和2.2.3c所示,它们分别对应系统处于不稳定、临界稳定和稳定的三种情况实验三 典型环节(或系统)的频率特性测量一.实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能2.学习根据实验所得频率特性曲线求取传递函数的方法二.实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试2.用实验方法完成典型二阶系统开环频率特性曲线的测试3.根据测得的频率特性曲线求取各自的传递函数4.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较三.实验步骤1.熟悉频率测试软件的使用方法,了解实验的线路的连接利用实验箱上的模拟电路单元,参考本实验附录设计并连接“一阶惯性环节”模拟电路或“两个一阶惯性环节串联”的二阶系统模拟电路2.利用实验设备完成一阶惯性环节的频率特性曲线测试1)无上位机时,利用用户自配的信号源输出的正弦波信号作为环节输入,即连接信号源的“正弦波”与环节的输入端(例如对一阶惯性环节即图1.5.2的Ui)然后用示波器观测该环节的输入与输出(例如对一阶惯性环节即测试图1.5.2的Ui和Uo)注意调节正弦波信号的“频率”电位器RP与“幅值”电位器RP,测取不同频率时环节输出的增益和相移(测相移可用“李沙育”图形),从而画出环节的频率特性。
2)有上位机时,必须在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。












