
2021年浙江省杭州市中考数学试卷和答案.doc
34页2021年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣(﹣2021)=( )A.﹣2021 B.2021 C.﹣ D.2.(3分)“奋斗者”号载人潜水器此前在马里亚纳海沟创造了10909米的我国载人深潜记录.数据10909用科学记数法可表示为( )A.0.10909×105 B.1.0909×104 C.10.909×103 D.109.09×1023.(3分)因式分解:1﹣4y2=( )A.(1﹣2y)(1+2y) B.(2﹣y)(2+y) C.(1﹣2y)(2+y) D.(2﹣y)(1+2y)4.(3分)如图,设点P是直线l外一点,PQ⊥l,点T是直线l上的一个动点,连结PT,则( )A.PT≥2PQ B.PT≤2PQ C.PT≥PQ D.PT≤PQ5.(3分)下列计算正确的是( )A.=2 B.=﹣2 C.=±2 D.=±26.(3分)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则( )A.60.5(1﹣x)=25 B.25(1﹣x)=60.5 C.60.5(1+x)=25 D.25(1+x)=60.57.(3分)某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )A. B. C. D.8.(3分)在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3),发现这些图象对应的函数表达式各不相同,其中a的值最大为( )A. B. C. D.9.(3分)已知线段AB,按如下步骤作图:①作射线AC,使AC⊥AB;③以点A为圆心,AB长为半径作弧;④过点E作EP⊥AB于点P,则AP:AB=( )A.1: B.1:2 C.1: D.1:10.(3分)已知y1和y2均是以x为自变量的函数,当x=m时,函数值分别是M1和M2,若存在实数m,使得M1+M2=0,则称函数y1和y2具有性质P.以下函数y1和y2具有性质P的是( )A.y1=x2+2x和y2=﹣x﹣1 B.y1=x2+2x和y2=﹣x+1 C.y1=﹣和y2=﹣x﹣1 D.y1=﹣和y2=﹣x+1二、填空题:本大题有6个小题,每小题4分,共24分。
11.(4分)计算:sin30°= .12.(4分)计算:2a+3a= .13.(4分)如图,已知⊙O的半径为1,点P是⊙O外一点,T为切点,连结OT .14.(4分)现有甲、乙两种糖果的单价与千克数如下表所示.甲种糖果乙种糖果单价(元/千克)3020千克数23将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为 元/千克.15.(4分)如图,在直角坐标系中,以点A(3,1),AC,AD(1,1),点C(1,3),点D(4,4)(5,2),则∠BAC ∠DAE(填“>”、“=”、“<”中的一个).16.(4分)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,使点C落在对角线AC上的点F处,连接DF,则∠DAF= 度.三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或验算步骤17.(6分)以下是圆圆解不等式组的解答过程:解:由①,得2+x>﹣1,所以x>﹣3.由②,得1﹣x>2,所以﹣x>1,所以x>﹣1.所以原不等式组的解是x>﹣1.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.18.(8分)为了解某校某年级学生一分钟跳绳情况,对该年级全部360名学生进行一分钟跳绳次数的测试,并把测得数据分成四组(每一组不含前一个边界值,含后一个边界值).某校某年级360名学生一分钟跳绳次数的频数表 组别(次)频数100~13048130~16096160~190a190~22072(1)求a的值;(2)把频数分布直方图补充完整;(3)求该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比.19.(8分)在①AD=AE,②∠ABE=∠ACD,③FB=FC这三个条件中选择其中一个,并完成问题的解答.问题:如图,在△ABC中,∠ABC=∠ACB(不与点A,点B重合),点E在AC边上(不与点A,点C重合),连接BE,BE与CD相交于点F.若 ,求证:BE=CD.注:如果选择多个条件分别作答,按第一个解答计分.20.(10分)在直角坐标系中,设函数y1=(k1是常数,k1>0,x>0)与函数y2=k2x(k2是常数,k2≠0)的图象交于点A,点A关于y轴的对称点为点B.(1)若点B的坐标为(﹣1,2),①求k1,k2的值;②当y1<y2时,直接写出x的取值范围;(2)若点B在函数y3=(k3是常数,k3≠0)的图象上,求k1+k3的值.21.(10分)如图,在△ABC中,∠ABC的平分线BD交AC边于点D,∠C=45°.(1)求证:AB=BD;(2)若AE=3,求△ABC的面积.22.(12分)在直角坐标系中,设函数y=ax2+bx+1(a,b是常数,a≠0).(1)若该函数的图象经过(1,0)和(2,1)两点,求函数的表达式;(2)已知a=b=1,当x=p,q(p,q是实数,p≠q)时,该函数对应的函数值分别为P,求证:P+Q>6.23.(12分)如图,锐角三角形ABC内接于⊙O,∠BAC的平分线AG交⊙O于点G,连接BG.(1)求证:△ABG∽△AFC.(2)已知AB=a,AC=AF=b,求线段FG的长(用含a,b的代数式表示).(3)已知点E段AF上(不与点A,点F重合),点D段AE上(不与点A,点E重合),∠ABD=∠CBE2=GE•GD.答案与卡片一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.参考答案解:﹣(﹣2021)=2021.故选:B.2.参考答案解:10909=1.0909×104.故选:B.3.参考答案解:1﹣4y6=1﹣(2y)4=(1﹣2y)(4+2y).故选:A.4.参考答案解:∵PQ⊥l,点T是直线l上的一个动点,∴PT≥PQ,故选:C.5.参考答案解:A.=4;B.=8;C.=2;D.=4;故选:A.6.参考答案解:设该景点今年四月到五月接待游客人次的增长率为x(x>0),则25(1+x)=60.6.故选:D.7.参考答案解:把3节车厢分别记为A、B、C,画树状图如图:共有9种等可能的结果,甲和乙从同一节车厢上车的结果有6种,∴甲和乙从同一节车厢上车的概率为=,故选:C.8.参考答案解:由图象知,A、B、D组成的点开口向上;A、B、C组成的二次函数开口向上;B、C、D三点组成的二次函数开口向下;A、D、C三点组成的二次函数开口向下;即只需比较A、B、D组成的二次函数和A、B.设A、B、C组成的二次函数为y1=a1x2+b1x+c1,把A(4,2),0),5)代入上式得,,解得a1=;设A、B、D组成的二次函数为y=ax2+bx+c,把A(0,7),0),3)代入上式得,,解得a=,即a最大的值为,故选:A.9.参考答案解:∵AC⊥AB,∴∠CAB=90°,∵AD平分∠BAC,∴∠EAB=×90°=45°,∵EP⊥AB,∴∠APE=90°,∴∠EAP=∠AEP=45°,∴AP=PE,∴设AP=PE=x,故AE=AB=x,∴AP:AB=x:x=1:.故选:D.10.参考答案解:A.令y1+y2=7,则x2+2x﹣x﹣5=0,解得x=,即函数y1和y7具有性质P,符合题意;B.令y1+y2=7,则x2+2x﹣x+3=0,整理得,x2+x+6=0,方程无解1和y6不具有有性质P,不符合题意;C.令y1+y2=5,则﹣,整理得,x2+x+2=0,方程无解1和y8不具有有性质P,不符合题意;D.令y1+y2=8,则﹣,整理得,x2﹣x+4=0,方程无解1和y5不具有有性质P,不符合题意;故选:A.二、填空题:本大题有6个小题,每小题4分,共24分。
11.参考答案解:sin30°=.12.参考答案解:2a+3a=8a,故答案为5a.13.参考答案解:∵PT是⊙O的切线,T为切点,∴OT⊥PT,在Rt△OPT中,OT═1,∴PT═══,故:PT═.14.参考答案解:这5千克什锦糖果的单价为:(30×2+20×3)÷5=24(元/千克).故答案为:24.15.参考答案解:连接DE,由上图可知AB═2,BC═2,∴△ABC是等腰直角三角形,∴∠BAC═45°,又∵AE═══,同理可得DE══,AD══,则在△ADE中,有AE2+DE2═AD7,∴△ADE是等腰直角三角形,∴∠DAE═45°,∴∠BAC═∠DAE,故答案为:═.16.参考答案解:连接DM,如图:∵四边形ABCD是矩形,∴∠ADC=90°.∵M是AC的中点,∴DM=AM=CM,∴∠FAD=∠MDA,∠MDC=∠MCD.∵DC,DF关DE对称,∴DF=DC,∴∠DFC=∠DCF.∵MF=AB,AB=CD,∴MF=FD.∴∠FMD=∠FDM.∵∠DFC=∠FMD+∠FDM,∴∠DFC=2∠FMD.∵∠DMC=∠FAD+∠ADM,∴∠DMC=2∠FAD.设∠FAD=x°,则∠DFC=8x°,∴∠MCD=∠MDC=4x°.∵∠DMC+∠MCD+∠MDC=180°,∴2x+2x+4x=180.∴x=18.故答案为:18.三、解答题:本大题有7个小题,共66分。
解答应写出文字说明、证明过程或验算步骤17.参考答案解:圆圆的解答过程有错误,正确过程如下:由①得2+2x>﹣7,∴2x>﹣3,∴x>﹣,由②得1﹣x<6,∴﹣x<1,∴x>﹣1,∴不等式组的解集为x>﹣4.18.参考答案解:(1)a=360﹣(48+96+72)=144;(2)补全频数分布直方图如下:(3)该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比为×100%=20%.19.参考答案证明:选择条件①的证明为:∵∠ABC=∠ACB,∴AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴BE=CD;选择条件②的证明为:∵∠ABC=∠ACB,∴AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴BE=CD;选择条件③的证明为:∵∠ABC=∠ACB,∴AB=AC,∵FB=FC,∴∠FBC=∠FCB,∴∠ABC﹣∠FBC=∠ACB﹣∠FCB,即∠ABE=∠ACD,在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴。












