
精品试卷鲁教版(五四制)六年级数学下册第九章变量之间的关系综合测评练习题(无超纲).docx
16页六年级数学下册第九章变量之间的关系综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、2018年10月,历时九年建设的港珠澳大桥正式通车,住在珠海的小亮一家,决定自驾去香港旅游,经港珠澳大桥去香港全程108千米,汽车行进速度v为110千米/时,若用s (千米)表示小亮家汽车行驶的路程,行驶时间用t (小时)表示,下列说法正确的是( )A.s是自变量, t是因变量 B.s是自变量, v是因变量C.t是自变量, s是因变量 D.v是自变量, t是因变量2、圆周长公式,下列说法正确的是( ).A.是变量,2是常量 B.是变量, 是常量C.是变量, 是常量 D.是变量 , 是常量3、某品牌豆浆机的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下:( )定价/元708090100110120销量/个801001101008060A.定价是常量,销量是变量B.定价是变量,销量是常量C.定价与销量都是变量,定价是自变量,销量是因变量D.定价与销量都是变量,销量是自变量,定价是因变量4、李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是( )A.金额 B.数量C.单价 D.金额和单价5、将温度计从热茶的杯子中取出之后,立即被放入一杯凉水中.每隔后读一次温度计上显示的度数,将记录下的数据制成下表:时间t(单位:s)51015202530温度计读数(单位:℃)49.031.022.016.514.012.0下述说法不正确的是( )A.自变量是时间,因变量是温度计的读数B.当时,温度计上的读数是31.0℃C.温度计的读数随着时间推移逐渐减小,最后保持不变D.依据表格中反映出的规律,时,温度计上的读数是13.0℃6、在圆锥体积公式中(其中,表示圆锥底面半径表示圆锥的高),常量与变量分别是( )A.常量是变量是 B.常量是变量是C.常量是变量是 D.常量是变量是7、用圆的半径r来表示圆的周长C,其式子为C=2πr,则其中的常量为( )A.r B.π C.2 D.2π8、某品牌热水壶的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下: 定价/元708090100110120销量/把801001101008060现销售了把水壶,则定价约为( )A.元 B.元 C.元 D.元9、在圆的面积计算公式,其中为圆的半径,则变量是( )A. B. C., D.,10、小明带了2元钱去买笔,每支笔的价格是0.5元,那么小明买完笔后剩下的钱数y(元)与买到的笔的数量x(支)之间的函数图象大致是( ).A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、夏天高山上的气温从山脚起每升高l00m降低0.7℃,已知山脚下的气温是23℃,则气温y(℃)与上升的高度x(m)之间的关系式为____;当x=500时,y=__;当y=16时,x=__.2、城市绿道串连起绿地、公园、人行横道和自行车道改善了城市的交通环境,引导市民绿色出行截至2019年年底,某市城市绿道达2000千米,该市人均绿道长度y(单位:千米)随人口数x的变化而变化,指出这个问题中的所有变量________________.3、小邢到单位附近的加油站加油,下图所示是他所用的加油机上的数据显示牌,则数据中的变量是______4、一个水库的水位在最近5h内持续上涨,下表记录了这5h内6个时间点的水位高度,其中t表示时间,y表示水位高度.t/h012345y/m33.33.63.94.24.5据估计这种上涨规律还会持续2h,预测再过2h水位高度将为________m.5、已知某地的地面气温是20℃,如果每升高1km气温下降6℃,则该地气温t(℃)与高度h(km)的函数关系式为 ___.6、一个梯形的高为8厘米,上底长为5厘米,当梯形下底x(厘米)由长变短时,梯形的面积y(厘米)也随之发生变化,请写出y与x之间的关系式________.7、某种储蓄的月利率是0.36%,今存入本金100元,则本息和y(元)与所存月数x之间的关系式为_____,其中常量是_____,变量是_____.8、某山区的气象资料表明:从地面到高空11km之间,气温随高度的升高而下降,每升高1km,气温下降6℃.若测定某天当地地面气温是24℃,设该地区离地面hkm(0≤h≤11)处的气温为t℃,试写出t与h之间的关系式为_________________.三、解答题(3小题,每小题10分,共计30分)1、威宁粮食二库需要把晾晒场上的120吨苞谷入库封存.受设备影响,每天只能入库15吨.入库所用的时间为 (单位:天),未入库苞谷数量为(单位:吨).(1)直接写出和间的关系式为:______.(2)二库职工经过钻研,改进了入库设备,现在每天能比原来多入库5吨.则①直接写出现在和间的关系式为:______.②求将120吨苞谷入库封存所需天数现在比原来少多少天?2、如图,是李老师骑自行车上班途中,骑车路程与时间的关系,根据图像合理想像李老师上班途中的情况.3、南方A市欲将一批容易变质的水果运往B市销售,若有飞机、火车、汽车三种运输方式,现只选择其中一种,这三种运输方式的主要参考数据如下表所示:运输工具途中速度(km/h)途中费用(元/km)装卸费用(元)装卸时间飞机2001610002火车100420004汽车50810002若这批水果在运输(包括装卸)过程中的损耗为200元/h,记A、B两市间的距离为xkm.(1)如果用W1、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求W1、W2、W3与x间的关系式;(2)当x=250时,应采用哪种运输方式,才使运输时的总支出费用最小?-参考答案-一、单选题1、C【解析】【分析】根据题意可知路程s是随着时间t的变化而变化的,联系因变量和自变量的概念解答即可【详解】题中有两个变量:t、s,由于变量路程s随着变量时间t的变化而变化,所以t是自变量,s是因变量.故选C.【点睛】本题主要考查了自变量和因变量的判定,回忆自变量和因变量的概念:在一个不断变化的数量中,如果一个变量y随着另一个变量x的变化而变化,那么我们把x叫做自变量,y叫因变量.2、D【解析】【分析】根据事物发生变化的过程中发生变化的量是变量,事物变化的过程中不变的量是常量,可得答案【详解】由,得C、r是变量,2π是常量,故D正确故选:D【点睛】此题考查常量与变量,难度不大3、C【解析】【分析】根据某个过程中,变量和常量的定义,即可得到答案.【详解】由题意得:定价与销量都是变量,定价是自变量,销量是因变量.故选C.【点睛】本题主要考查变量和常量的定义,掌握变量是在一个过程中,数值变化的量,是解题的关键.4、C【解析】【分析】根据常量与变量的定义即可判断.【详解】解:A、金额是随着数量的变化而变化,是变量,不符合题意;B、数量会根据李师傅加油多少而改变,是变量,不符合题意;C、单价是不变的量,是常量,符合题意;D、金额是变量,单价是常量,不符合题意;故选:C.【点睛】本题考查了常量与变量,解题的关键是正确理解常量与变量即:常量是固定不变的量,变量是变化的量,本题属于基础题型.5、D【解析】【分析】根据题意和表格中的数据逐项判断即可.【详解】解:A、自变量是时间,因变量是温度计的读数,正确,不符合题意;B、当时,温度计上的读数是31.0℃,正确,不符合题意;C、温度计的读数随着时间推移逐渐减小,最后保持不变,正确,不符合题意;D、依据表格中反映出的规律,时,温度计上的读数可能低于12℃或者等于12℃,错误,符合题意,故选:D.【点睛】本题考查用表格表示变量间的关系,能从表格中获取有效信息是解答的关键.6、C【解析】【分析】根据常量,变量的概念,逐一判断选项,即可得到答案.【详解】在圆锥体积公式中,常量是变量是,故选C.【点睛】本题主要考查常量与变量的概念,掌握“在一个过程中,数值变化的量是变量,数值不变的量是常量”是解题的关键.7、D【解析】【分析】由常量与变量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可求得答案.【详解】∵C=2πr,π是圆周率,∴2π是常量,C与r是变量.故选:D.【点睛】此题考查了常量与变量.注意掌握常量与变量的定义是解此题的关键,注意π是圆周率,是常量.8、D【解析】【分析】根据表格中定价的变化和销量的变化即可解答.【详解】解:由表中数据可知,定价为90元时,销量达到最大为110把,而销售105把水壶,销量位于100把到110把之间,而当定价在80元到90元时,定价每增加1元,销量增加1把,销量呈递增趋势,当定价在90元到100元时,定价每增加1元,销量减少1把,销量呈递减趋势,故定价约为80+(105-100)÷1=85元,故选:D.【点睛】本题考查了用表格法表示两个变量之间的关系,解答的关键是读懂题意,能从表格中找到有效信息解决问题.9、D【解析】【分析】在圆的面积计算公式中,π是圆周率,是常数,变量为S,R.【详解】在圆的面积计算公式中,π是圆周率,是常数,变量为S,R.故选D.【点睛】本题主要考查常量与变量,解题关键是熟练掌握圆的面积S随半径的变化而变化.10、D【解析】【分析】根据题意列出函数解析式,进而根据实际意义求得函数图像,注意自变量的取值范围.【详解】依题意,(为正整数)可以取得,对应的的值为,故选D【点睛】本题考查了根据实际问题列出函数关系式,变量与函数图像,结合实际是解题的关键.二、填空题1、 y=23-0.007x 19.5 1000【解析】【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式;当x=500时,把x=500代入解析式求得y的值;当y=16时,把y=16代入解析式求得x的值.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;当x=500时,y=23-0.007×500=19.5;当y=16时,23-0.0。
