
2021-2022学年浙江省桐庐县数学八下期末达标测试试题含解析.doc
21页2021-2022学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上3.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题(每题4分,共48分)1.已知不等式ax+b>0的解集是x<-2,则函数y=ax+b的图象可能是( )A. B.C. D.2.如图,中,与关于点成中心对称,连接,当( )时,四边形为矩形.A. B.C. D.3.下列式子中属于最简二次根式的是( )A. B. C. D.4.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是( )A. B.C. D.5.如图,中,,是上一点,且,是上任一点,于点,于点,下列结论:①是等腰三角形;②;③;④,其中正确的结论是( )A.①② B.①③④ C.①④ D.①②③④6.二次根式在实数范围内有意义,则x应满足的条件是( )A.x≥1 B.x>1 C.x>﹣1 D.x≥﹣17.把一元二次方程x2﹣6x+1=0配方成(x+m)2=n的形式,正确的是( )A.(x+3)2=10 B.(x﹣3)2=10 C.(x+3)2=8 D.(x﹣3)2=88.计算的结果是( )A.-3 B.3 C.6 D.99.如图,把矩形ABCD沿对角线BD折叠,重叠部分为△EBD,则下列说法可能错误的是( )A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE=30°10.若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是 ( )A.菱形 B.对角线互相垂直的四边形C.矩形 D.对角线相等的四边形11.下列各比值中,是直角三角形的三边之比的是( )A.1:2:3 B.2:3:4 C.3:4:6 D.1::212.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( )A.4cm B.6cm C.8cm D.10cm二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,直线y=x-1与矩形OABC的边BC、OC分别交于点E、F,已知OA=3,OC=4,则的面积是_________.14.函数 yl=" x" ( x ≥0 ) ,( x > 0 )的图象如图所示,则结论:①两函数图象的交点A的坐标为(3 ,3 ) ②当 x > 3时,③当 x =1时, BC = 8④当 x 逐渐增大时, yl随着 x 的增大而增大,y2随着 x 的增大而减小.其中正确结论的序号是_ .15.如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为______cm.16.对下列现象中蕴含的数学原理阐述正确的是_____(填序号)①如图(1),剪两张对边平行的纸条,随意交叉叠放在一起,重合的部分构成一个平行四边形.其依据是两组对边分别平行的四边形是平行四边形.②如图(2),工人师傅在做矩形门窗时,不仅测量出两组对边的长度是否相等,还要测量出两条条对角线的长度相等,以确保图形是矩形.其依据是对角线相等的四边形是矩形.③如图(3),将两张等宽的纸条放在一起,重合部分构成的四边形ABCD一定是菱形.其依据是一组邻边相等的平行四边形是菱形.④如图(4),把一张长方形纸片按如图方式折一下,就可以裁出正方形.其依据是一组邻边相等的矩形是正方形.17.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E,连结DE.若四边形ODBE的面积为9,则△ODE的面积是________. 18.若分式 的值为零,则x=________.三、解答题(共78分)19.(8分)某水果店经销进价分别为元/千克、元/千克的甲、乙两种水果,下表是近两天的销售情况:(进价、售价均保持不变,利润=售价-进价)时间甲水果销量乙水果销量销售收入周五千克千克元周六千克千克元(1)求甲、乙两种水果的销售单价;(2)若水果店准备用不多于元的资金再购进两种水果共千克,求最多能够进甲水果多少千克?(3)在(2)的条件下,水果店销售完这千克水果能否实现利润为元的目标?若能,请给出相应的采购方案;若不能,请说明理由.20.(8分)如图,在中,,平分,于.(1)求证:;(2)若,,求的面积.21.(8分)先化简分式,后在,0,1,2中选择一个合适的值代入求值.22.(10分)已知直线y=kx+b(k≠0)过点(1,2)(1)填空:b= (用含k代数式表示);(2)将此直线向下平移2个单位,设平移后的直线交x于点A,交y于点B,x轴上另有点C(1+k,0),使得△ABC的面积为2,求k值;(3)当1≤x≤3,函数值y总大于零,求k取值范围.23.(10分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出△ABC关于原点成中心对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点B″的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.24.(10分)如图所示,在边长为1的网格中作出△ABC绕点A按逆时针方向旋转90∘,再向下平移2格后的图形△A′B′C′.25.(12分)如图,矩形纸片中,已知,折叠纸片使边落在对角线上,点落在点处,折痕为,且,求线段的长.26.如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA的延长线上,∠FDA=∠B,AC=6,AB=8,求四边形AEDF的周长P.参考答案一、选择题(每题4分,共48分)1、A【解析】根据一次函数与一元一次不等式的关系,得到当x<-2时,直线y=ax+b的图象在x轴上方,然后对各选项分别进行判断.【详解】解:∵不等式ax+b>0的解集是x<-2,∴当x<-2时,函数y=ax+b的函数值为正数,即直线y=ax+b的图象在x轴上方.故选:A.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.2、C【解析】由对称性质可先证得四边形AEFB是平行四边形,对角线相等的平行四边形是矩形,得到AF=BE,进而得到△BCA为等边三角形,得到角度为60°【详解】∵与关于点成中心对称∴AC=CF,BC=EC∴四边形AEFB是平行四边形当AF=BE时,即BC=AC,四边形AEFB是矩形又∵∴△BCA为等边三角形,故选C【点睛】本题主要考查平行四边形的性质与矩形的判定性质,解题关键在于能够证明出三角形BCA是等边三角形3、C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数含分母,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含分母,故D错误;故选:C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4、A【解析】根据高线的定义即可得出结论.【详解】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点睛】本题考查的是作图−基本作图,熟知三角形高线的定义是解答此题的关键.5、B【解析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADB=∠C+∠DBC,然后求出∠C=∠DBC,再根据等角对等边可得DC=DB,从而判断①正确;没有条件说明∠C的度数,判断出②错误;连接PD,利用△BCD的面积列式求解即可得到PE+PF=AB,判断出③正确;过点B作BG∥AC交FP的延长线于G,根据两直线平行,内错角相等可得∠C=∠PBG,∠G=∠CFP=90°,然后求出四边形ABGF是矩形,根据矩形的对边相等可得AF=BG,根据然后利用“角角边”证明△BPE和△BPG全等,根据全等三角形对应边相等可得BG=BE,再利用勾股定理列式求解即可判断④正确.【详解】在△BCD中,∠ADB=∠C+∠DBC,∵∠ADB=2∠C,∴∠C=∠DBC,∴DC=DB,∴△DBC是等腰三角形,故①正确;无法说明∠C=30°,故②错误;连接PD,则S△BCD=BD•PE+DC•PF=DC•AB,∴PE+PF=AB,故③正确;过点B作BG∥AC交FP的延长线于G, 则∠C=∠PBG,∠G=∠CFP=90°,∴∠PBG=∠DBC,四边形ABGF是矩形,∴AF=BG,在△BPE和△BPG中,,∴△BPE≌△BPG(AAS),∴BG=BE,∴AF=BE,在Rt△PBE中,PE2+BE2=BP2,即PE2+AF2=BP2,故④正确.综上所述,正确的结论有①③④.故选:B.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,勾股定理的应用,作辅助线构造出矩形和全等三角形是解题的关键.6、A【解析】二次根式在实数范围内有意义的条件是被开方数大于等于0,据此列不等式求出x的范围即可.【详解】由题意得:x-1≥0, 则 x≥1 , 故答案为:A.【点睛】本题考查二次根式有意义的条件,属于简单题,基础知识扎实是解题关键.7、D【解析】直接利用配方法进行求解即可.【详解】解:移项可得:x2-6x=-1,两边加9可得:x2-6x+9=-1+9,配方可得:(x-3)2=8,故选:D.【点睛】本题主要考查配方法的应用,熟练掌握配方的过程是解题的关键.8、B【解析】根据算数平方根的意义解答即可.【详解】∵32=9,∴=3.故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.正数a有一个正的算术平方根, 0的算术平方根是0,负数没有算术平方根.9、D【解析】根据ABCD为矩形,所以∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,所以△AEB≌△CED,就可以得出BE=DE,由此判断即可.【详解】∵四边形ABCD为矩形∴∠BAE=∠DCE,AB=CD,故A. B选项正确;在△AEB和△CED中, ,∴△AEB≌△CED(AAS),∴BE=DE,故C正确;∵得不出∠ABE=∠EBD,∴∠ABE不一定等于30°,故D错误.故选:D.【点睛】此题考查翻折变换(折叠问题),解题关键在于利用全等三角形的性质进行解答.10、D【解析】根据三角形的中位线定理得到EH∥FG,EF=FG,EF=BD,要是四边形为菱形,得出EF=EH,即可得到答案.【详解】解:∵。












