好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

罗甸县高中2018-2019学年上学期高二数学12月月考试题含解析.doc

15页
  • 卖家[上传人]:re****.1
  • 文档编号:548670541
  • 上传时间:2024-02-27
  • 文档格式:DOC
  • 文档大小:534KB
  • / 15 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 罗甸县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积为、、,则( )A. B. C. D.2. 若是两条不同的直线,是三个不同的平面,则下列为真命题的是( )A.若,则B.若,则C.若,则D.若,则3. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )A.π B.2π C.4π D. π4. 在平面直角坐标系中,向量=(1,2),=(2,m),若O,A,B三点能构成三角形,则(   )A. B. C. D.5. 设Sn为等比数列{an}的前n项和,已知3S3=a4﹣2,3S2=a3﹣2,则公比q=( )A.3 B.4 C.5 D.66. 下列命题中正确的是( )A.若命题p为真命题,命题q为假命题,则命题“p∧q”为真命题B.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”C.“”是“”的充分不必要条件D.命题“∀x∈R,2x>0”的否定是“”7. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( )A.M∪N B.(∁UM)∩N C.M∩(∁UN) D.(∁UM)∩(∁UN)8. 下列各组表示同一函数的是( ) A.y=与y=()2 B.y=lgx2与y=2lgx C.y=1+与y=1+ D.y=x2﹣1(x∈R)与y=x2﹣1(x∈N)   9. 已知实数x,y满足有不等式组,且z=2x+y的最大值是最小值的2倍,则实数a的值是( )A.2 B. C. D.10.已知向量||=, •=10,|+|=5,则||=( )A. B. C.5 D.2511.已知函数f(x)=sin2(ωx)﹣(ω>0)的周期为π,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为( )A.π B. C. D.12.将函数f(x)=3sin(2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则φ的值不可能是( )A. B.π C. D.二、填空题13.1785与840的最大约数为  .14.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x﹣y+1=0相交所得的弦长为,则圆的方程为      .15.已知一组数据,,,,的方差是2,另一组数据,,,,()的标准差是,则 .16.在(1+x)(x2+)6的展开式中,x3的系数是  .17.命题“若,则”的否命题为 .18.双曲线x2﹣my2=1(m>0)的实轴长是虚轴长的2倍,则m的值为      .   三、解答题19.已知函数f(x0=.(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间; (2)解不等式f(x﹣1)≤﹣.20.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室。

      那么药物释放开始,至少需要经过多少小时后,学生才能回到教室? 21.从5名女同学和4名男同学中选出4人参加演讲比赛,(1)男、女同学各2名,有多少种不同选法?(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?22.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.统计局调查队随机抽取了甲、乙两单位中各5名职工的成绩,成绩如下表: 甲单位8788919193乙单位8589919293(1)根据表中的数据,分别求出甲、乙两单位职工成绩的平均数和方差,并判断哪个单位对法律知识的掌握更稳定;(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.23.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上. (1)求证:平面AEC⊥平面PDB; (2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小. 24.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一段图象如图所示. (1)求f(x)的解析式; (2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合; (3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.   罗甸县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A【解析】考点:棱锥的结构特征.2. 【答案】C【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个平面平行,两个平面内的直线不一定平行,所以B不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D不正确;根据面面垂直的判定定理知C正确.故选C.考点:空间直线、平面间的位置关系.3. 【答案】C【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为: cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为: =4π故选:C. 4. 【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。

      若O,A,B三点共线,有:-m=4,m=-4.故要使O,A,B三点不共线,则故答案为:B5. 【答案】B【解析】解:∵Sn为等比数列{an}的前n项和,3S3=a4﹣2,3S2=a3﹣2,两式相减得3a3=a4﹣a3,a4=4a3,∴公比q=4.故选:B. 6. 【答案】 D【解析】解:若命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,故A不正确;命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”,故B不正确;“”⇒“+2kπ,或,k∈Z”,“”⇒“”,故“”是“”的必要不充分条件,故C不正确;命题“∀x∈R,2x>0”的否定是“”,故D正确.故选D.【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答. 7. 【答案】B【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},∴∁UM={0,1},∴N∩(∁UM)={0,1},故选:B.【点评】本题主要考查集合的子交并补运算,属于基础题. 8. 【答案】C【解析】解:A.y=|x|,定义域为R,y=()2=x,定义域为{x|x≥0},定义域不同,不能表示同一函数. B.y=lgx2,的定义域为{x|x≠0},y=2lgx的定义域为{x|x>0},所以两个函数的定义域不同,所以不能表示同一函数. C.两个函数的定义域都为{x|x≠0},对应法则相同,能表示同一函数. D.两个函数的定义域不同,不能表示同一函数. 故选:C. 【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.   9. 【答案】B【解析】解:由约束条件作出可行域如图,联立,得A(a,a),联立,得B(1,1),化目标函数z=2x+y为y=﹣2x+z,由图可知zmax=2×1+1=3,zmin=2a+a=3a,由6a=3,得a=.故选:B.【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题. 10.【答案】C【解析】解:∵;∴由得, =;∴;∴.故选:C. 11.【答案】D【解析】解:由函数f(x)=sin2(ωx)﹣=﹣cos2ωx (ω>0)的周期为=π,可得ω=1,故f(x)=﹣cos2x.若将其图象沿x轴向右平移a个单位(a>0),可得y=﹣cos2(x﹣a)=﹣cos(2x﹣2a)的图象;再根据所得图象关于原点对称,可得2a=kπ+,a=+,k∈Z.则实数a的最小值为.故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos(ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题. 12.【答案】C【解析】函数f(x)=sin(2x+θ)(﹣<θ<)向右平移φ个单位,得到g(x)=sin(2x+θ﹣2φ),因为两个函数都经过P(0,),所以sinθ=,又因为﹣<θ<,所以θ=,所以g(x)=sin(2x+﹣2φ),sin(﹣2φ)=,所以﹣2φ=2kπ+,k∈Z,此时φ=kπ,k∈Z,或﹣2φ=2kπ+,k∈Z,此时φ=kπ﹣,k∈Z,故选:C.【点评】本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,三角函数求值,难度中档 二、填空题13.【答案】 105 . 【解析】解:1785=840×2+105,840=105×8+0.∴840与1785的最大公约数是105.故答案为105 14.【答案】 (x﹣1)2+(y+1)2=5 . 【解析】解:设所求圆的圆心为(a,b),半径为r,∵点A(2,1)关于直线x+y=0的对称点A′仍在这个圆上,∴圆心(a,b)在直线x+y=0上,∴a+b=0,①且(2﹣a)2+(1﹣b)2=r2;②又直线x﹣y+1=0截圆所得的弦长为,且圆心(a,b)到直线x﹣y+1=0的距离为d==,根据垂径定理得:r2﹣d2=,即r2﹣()2=③;由方程①②③组成方程组,解得;∴所求圆的方程为(x﹣1)2+(y+1)2=5.故答案为:(x﹣1)2+(y+1)2=5. 15.【答案】2【解析】试题分析:第一组数据平均数为,.考点:方差;标准差.16.【答案】 20 . 【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为 Tr+1=•x12﹣3r,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20.故答案为:20. 17.【答案】若,则【解析】试题分析:若,则,否命题要求。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.