
河北邢台市2023-2024学年数学高一上期末监测模拟试题含解析.doc
15页河北邢台市2023-2024学年数学高一上期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,共60分)1.集合,集合或,则集合()A. B.C. D.2.已知集合,则 ( )A. B.C. D.3.函数的部分图象大致是A. B.C. D.4.已知为偶函数,当时,,当时,,则满足不等式的整数的个数为()A.4 B.6C.8 D.105.已知函数f (x) =有两不同的零点,则的取值范围是()A.(−∞,0) B.(0,+∞)C.(−1,0) D.(0,1)6.下列结论正确的是()A.不相等的角终边一定不相同B.,,则C.函数的定义域是D.对任意的,,都有7.函数y=sin2x,xR的最小正周期是( )A.3π B.πC.2 D.18.若函数f(x)=,则f(f())=( )A.4 B.C. D.9.已知函数对于任意两个不相等实数,都有成立,则实数的取值范围是()A. B.C. D.10.已知函数的部分图象如图所示,则的解析式为( )A. B.C. D.11.已知幂函数f(x)=xa的图象经过点(2,),则函数f(x)为( )A.奇函数且在上单调递增 B.偶函数且在上单调递减C.非奇非偶函数且在上单调递增 D.非奇非偶函数且在上单调递减12.函数的定义域为,且为奇函数,当时,,则函数的所有零点之和是()A.2 B.4C.6 D.8二、填空题(本大题共4小题,共20分)13.已知是定义在R上的偶函数,且在上单调递减,若(且),则a的取值范围为_____________.14.若函数y=是函数的反函数,则_________________15.定义在上的偶函数满足:当时,,则______16.已知集合(1)当时,求的非空真子集的个数;(2)当时,若,求实数的取值范围三、解答题(本大题共6小题,共70分)17.已知函数的最小值正周期是(1)求的值;(2)求函数的最大值,并且求使取得最大值的x的集合18.如图,三棱台DEF ABC中,AB=2DE,G,H分别为AC,BC的中点(1)求证:平面ABED∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.19.如图,已知平面,四边形为矩形,四边形为直角梯形,,,,.(1)求证:平面;(2)求三棱锥的体积.20.已知函数.(1)求函数的定义域;(2)若对任意恒有,求实数的取值范围.21.已知为锐角,(1)求的值;(2)求的值22.已知函数.(1)若,判断函数的零点个数;(2)若对任意实数,函数恒有两个相异的零点,求实数的取值范围;(3)已知且,,求证:方程在区间上有实数根.参考答案一、选择题(本大题共12小题,共60分)1、C【解析】先求得,结合集合并集的运算,即可求解.【详解】由题意,集合或,可得,又由,所以.故选:C.2、B【解析】直接利用两个集合的交集的定义求得M∩N【详解】集合M={x|x+1≥0}={x|x≥-1},N={x|x2<4}={x|-2<x<2},则M∩N={x|-1≤x<2},故选B【点睛】本题主要考查两个集合的交集的定义和求法,属于基础题3、B【解析】判断f(x)的奇偶性,在(,π)上的单调性,再通过f()的值判断详解:f(﹣x)==﹣f(x),∴f(x)是奇函数,f(x)的图象关于原点对称,排除C;,排除A,当x>0时,f(x)=,f′(x)=,∴当x∈(,π)时,f′(x)>0,∴f(x)在(,π)上单调递增,排除D,故选B点睛:点睛:本题考查函数图象的判断与应用,考查转化思想以及数形结合思想的应用.对于已知函数表达式选图像的题目,可以通过表达式的定义域和值域进行排除选项,可以通过表达式的奇偶性排除选项;也可以通过极限来排除选项.4、C【解析】由时的解析式,可先求得不等式的解集.再根据偶函数性质,即可求得整个定义域内满足不等式的解集,即可确定整数解的个数.【详解】当时,,解得,所以;当时,,解得,所以.因为为偶函数,所以不等式的解集为.故整数的个数为8.故选:C【点睛】本题考查了不等式的解法,偶函数性质的应用,属于基础题.5、A【解析】函数f (x) =有两不同的零点,可以转化为直线与函数的图象有两个不同的交点,构造不等式即可求得的取值范围.【详解】由题可知方程有两个不同的实数根,则直线与函数的图象有两个不同的交点,作出与的大致图象如下:不妨设,由图可知,,整理得,由基本不等式得,(当且仅当时等号成立)又,所以,解得,故选:A6、B【解析】根据对数函数与三角函数的性质依次讨论各选项即可得答案.【详解】解:对于A选项,例如角的终边相同,但不相等,故错误;对于B选项,,,则,故正确;对于C选项,由题,解得,即定义域是,故错误;对于D选项,对数不存在该运算法则,故错误;故选:B7、B【解析】根据解析式可直接求出最小正周期.【详解】函数的最小正周期为.故选:B.8、C【解析】由题意结合函数的解析式求解函数值即可.【详解】由函数的解析式可得:,.故选C【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题9、B【解析】由题可得函数为减函数,根据单调性可求解参数的范围.【详解】由题可得,函数为单调递减函数,当时,若单减,则对称轴,得:,当时,若单减,则,在分界点处,应满足,即,综上:故选:B10、B【解析】根据图像得到,,计算排除得到答案.【详解】根据图像知选项:,排除;D选项: ,排除;根据图像知 选项:,排除;故选:【点睛】本题考查了三角函数图像的识别,计算特殊值可以快速排除选项,是解题的关键.11、C【解析】根据已知求出a=,从而函数f(x)=,由此得到函数f(x)是非奇非偶函数且在(0,+∞)上单调递增【详解】∵幂函数f(x)=xa的图象经过点(2,),∴2a=,解得a=,∴函数f(x)=,∴函数f(x)是非奇非偶函数且在(0,+∞)上单调递增故选C【点睛】本题考查命题真假的判断,考查幂函数的性质等基础知识,考查运算求解能力,是基础题12、B【解析】根据题意可知图象关于点中心对称,由的解析式求出时的零点,根据对称性即可求出时的零点,即可求解.【详解】因为为奇函数,所以函数的图象关于点中心对称,将的图象向右平移个单位可得的图象,所以图象关于点中心对称,当时,,令解得:或,因为函数图象关于点中心对称,则当时,有两解,为或,所以函数的所有零点之和是,故选:B第II卷(非选择题二、填空题(本大题共4小题,共20分)13、【解析】根据偶函数的性质,结合绝对值的性质、对数函数的单调性,分类讨论,求出a的取值范围.【详解】因为已知是定义在R上的偶函数,所以由,又因为 上单调递减,所以有.当时,;当时,.故答案为:【点睛】本题考查利用函数的奇偶性和单调性解不等式,考查了对数函数的单调性,考查了数学运算能力.14、0【解析】可得,再代值求解的值即可【详解】的反函数为,则,则,则.故答案为:015、12【解析】根据偶函数定义,结合时的函数解析式,代值计算即可.【详解】因为是定义在上的偶函数,故可得,又当时,,故可得,综上所述:.故答案为:.16、(1)30(2)或【解析】(1)当时,可得中元素的个数,进而可得的非空真子集的个数;(2)根据,可分和两种情况讨论,可得出实数的取值范围【小问1详解】当时,,共有5个元素,所以的非空真子集的个数为【小问2详解】(1)当时,,解得;(2)当时,根据题意作出如图所示的数轴,可得或解得:或综上可得,实数的取值范围是或三、解答题(本大题共6小题,共70分)17、(1);(2)最大值为,此时.【解析】(1)利用二倍角公式以及辅助角公式可得,再由即可求解.(2)由(1)知,,令,即可求解.【详解】(1)由题设,函数的最小正周期是,可得,所以;(2)由(1)知,当,即时,取得最大值1,所以函数的最大值为18、(1)见解析(2)见解析【解析】解析:(1)在三棱台DEFABC中,BC=2EF,H为BC的中点,BH∥EF,BH=EF,四边形BHFE为平行四边形,有BE∥HF. BE∥平面FGH在△ABC中,G为AC的中点,H为BC的中点,GH∥AB. AB∥平面FGH又AB∩BE=B,所以平面ABED∥平面FGH.(2)连接HE,EGG,H分别为AC,BC的中点,GH∥AB.AB⊥BC,GH⊥BC.又H为BC的中点,EF∥HC,EF=HC,四边形EFCH是平行四边形,有CF∥HE.CF⊥BC,HE⊥BC.HE,GH⊂平面EGH,HE∩GH=H,BC⊥平面EGH.BC⊂平面BCD,平面BCD⊥平面EGH.19、(1)证明见解析;(2).【解析】(1)先证明AC⊥BE,再取的中点,连接,经计算,利用勾股定理逆定理得到AC⊥BC,然后利用线面垂直的判定定理证得结论;(2)利用线面垂直的判定定理证得CM⊥平面BEF,即为所求三棱锥的高,进而计算得到其体积.【详解】解:(1)证明:∵四边形为矩形∴∵平面∴平面∵平面∴.如图,取的中点,连接,∴∵,,∴四边形是正方形.∴∴,∵∴∴是直角三角形∴.∵,、平面∴平面(2)由(1)知:∵平面,平面∴∵,、平面∴平面,∴平面即:是三棱锥的高∴【点睛】本题考查线面垂直的证明,棱锥的体积的计算,属基础题.在利用线面垂直的判定定理证明线面垂直时一定要将条件表述全面,“两个垂直,一个相交”不可缺少.20、(1)答案见解析;(2).【解析】(1)根据对数的真数为正即可求解;(2)对任意恒有对恒成立,参变分离即可求解a的范围.【小问1详解】由得,,等价于,∵方程的,当,即时,恒成立,解得,当,即时,原不等式即为,解得且;当,即,又,即时,方程的两根、,∴解得或,综上可得当时,定义域为,当时,定义域为且,当时,定义域为或;【小问2详解】对任意恒有,即对恒成立,∴,而,在上是减函数,∴,所以实数的取值范围为.21、(1);(2).【解析】(1)根据题中条件,求出,,再由两角差的余弦公式,求出,根据二倍角公式,即可求出结果;(2)由(1)求出,,再由两角差的正切公式,即可求出结果.【详解】(1),为锐角,且,,则,,,,;(2)由(1),所以,则,又,,;.22、⑴。












