
船舶动力装置的历史及未来发展.ppt
88页船舶动力装置的历史及未来发展 The History and Future of Marin Power System 主要内容 船舶动力装置简介 船用柴油机的现状与未来发展 船舶电力推进技术的历史与发展 挑战与展望 世界和中国都需要大规模的航运中国对外贸易1.15亿USD,其中90%通过远洋航运实现——石油进口1.2亿吨,居世界第二每天都有以千万吨计的油轮正在为中国运送石油——矿石进口,去年我国进口铁矿石20799万吨,铜矿石进口288万吨,居世界第一矿石绝大部分自澳大利亚、南非、南美进口航运业(Shipping)——一个长盛不衰、欣欣向荣的行业 ——最大的贴牌生产国——最大的轻工业、纺织业出口国——世界集装箱运输量的1/3在中国世界前10位集装箱港口中,中国的香港、上海、深圳分别名列第一、第三、四位2010年世界集装箱港口排名) 保障航运的安全和畅通才能保障国防和社会生活的安全运行中国的航运业将会继续高速发展船舶动力装置 ——船舶的心脏 航运的硬件平台是船舶船舶和港口港口。
•港港口口是航运的起点和终点它需要能让大型船舶停泊(深水),并有高效的装卸设备和大面积的堆场•船舶船舶是航运的主体,穿梭于港口之间,其前进和操纵的能力来自于其推进装置船舶也相当于有人居住的水上岛屿,需要有完整的循环系统来保障生产和生活环境,如供电、供水、供暖(冷)、治污等 依据船舶的用途,船舶有专用的工作机械:——舰船 战斗系统——钻井船 开采系统——挖泥船 疏浚系统——渔船 捕捞系统 通常这些系统都以电力驱动 失去了动力,船舶便成为随风浪漂流的死船,处在极端危险的境地船舶动力系统的类型 船舶动力系统通常有两种类型 一、原动机与推进器机械联接构成独立的推进装置,另有船舶电站,负责供应所有辅助机械及生活系统推进用的原动机又称为主机(Main Engine) 现有的船舶80%以上,采用这类系统 原原动动机机(Prime Motor)是将燃料的化学能(或原子能)转化为机械能的机器。
原动机常用的为柴油机、燃气轮机、蒸汽涡轮(常规或原子锅炉) 推推进进器器(Propeller)通常为螺旋桨(螺距固定或可控),在小型高速船舶中也有用喷水推进(Water Jet Propulsion)的 原动机和推进器可以直联或通过减速齿轮联接Energysources:FossilAtomic…GeneratorMainengine::DieselTurbine... loadsMechanicalEnergyElectricenergyPropellersEnergysources:FossilPrimeengine::DieselTurbine...MechanicalEnergy原动机的分类及用途汽油机Gasoline Engine柴油机Diesel Engine蒸汽涡轮装置Steam Turbine燃气涡轮装置Gas Turbine热效率较低,功率小于200千瓦,大量用于汽车,仅游艇等小型船舶使用 热效率最高,低速柴油机可与螺旋桨直联80%以上的民用商船采用柴油机为主机,通常小于10万千瓦 由涡轮和锅炉组成,热效率较柴油机低功率可很大,以煤为燃料的装置常用于发电厂,在船舶上常用于核动力船及液化天然气船 重量轻而功率大,常用于航空发动机,船舶中主要用于军舰 二、电力推进的船舶动力装置(Marine Electric Propulsion) 电力推进船舶有一个集中的中央电站,向全船供应动力,包括推进动力在内。
电力推进船舶目前大约只占1/6,但未来将会成倍增长 MEPS: WHAT’s & WHYwMEPS is a propulsion system in which propellers are driven by electric motorsEnergysources:FossilAtomic…PropellersMotorGeneratorPrimeengine::DieselTurbine...Fuel CellOther loadsMechanicalEnergyElectricenergy船用柴油机的现状与未来发展The History and future of Marine Diesel Engine---柴油机:顾名思义是以柴油为原料石油燃料分类天然气 CH4/C2H6液化石油气 C3H8/C4H10汽油 ~C8煤油 >C8柴油 ~C16重油 >C16沥青 易于点燃易于自燃不易燃烧沸点增加方向C原子增加方向一、柴油机最基本的特征The Basic Feature of Diesel Engine: What’s & Why 柴油机的工作原理(Working Principal): i)活塞下行:吸入空气 ii)活塞上行:压缩空气,使空气变热,压力增 加,燃油喷在热空气中着火产生高温高压 iii)活塞下行:高温高压烟气膨胀推动活塞下行 iv)活塞上行:将已燃烟气排出缸外 v)活塞下行:吸入空气…,新的循环开始 柴油机是一种原动机(Prime Motor,Engine):——将燃料化学能转换为机械能的转换器(Energy Converter)——为人类提供机械能(Mechanical Energy Supplier)——柴油机:顾名思义是以柴油为燃料 柴油机是一种内燃机(Internal Combustion Engine) : 燃料在发动机内部燃烧 (蒸汽机(Steam Engine)、蒸汽涡轮(Steam Turbine)等为外燃机(External Combustion Engine),汽油机也是内燃机) 柴油机是一种往复式发动机(Reciprocating Engine) : 其特征是具有曲柄连杆机构,将周而复始的往复运动转化为持久的回转运动。
柴油机是一种压燃式发动机(Compressed Ignition Engine): 燃料在压缩后的热空气中自燃着火 汽油机是以火花去点燃热的油、气混合物,称为点燃式发动机(Spark Ignition Engine) 迄今为止,柴油机仍然是热效率最高,应用最广泛的发动机在船舶动力及大功率车辆的应用上占有绝对的优势二、柴油机的发展历史The History of Diesel Engine Developmentw柴油机又名狄塞尔发动机,是德国人Rudolf Diesel在1890年发明,是老牌工业文明的产物 w1893至1897年期间,在德国的奥古斯堡MAN制造厂开发出了第一台可以应用的柴油机今天MAN公司仍然是世界上最大的柴油机制造商之一w在最初20年中,柴油机的基本结构已经形成,并在航空、车辆、航海等方面取得广泛的应用1912年首台柴油机用于远洋船舶,此时船舶的动力还是蒸汽机的天下( Titanic,即在该年首航并沉没)。
w在 此后20余年的竞争中,随着二次世界大战中“自由轮”的退役,蒸汽机全面退出了历史舞台,取而代之的是大功率的船用柴油机w另一方面在航空领域中涡轮机及喷气机的崛起,则使星型航空发动机在飞行动力中被淘汰w在数十年的竞争过程中很多名牌公司被淘汰或兼并,其中包括美国、英国、荷兰、瑞典等发达国家的制造商今天90%以上的远洋船市场已被2~3个大跨国公司所垄断w这些处于垄断地位的大跨国公司主要是MAN-B&W公司以及Watshila-Sulzer公司,世界主要的造机或造船厂都是购买了他们的专利许可证生产他们的产品在韩国生产的MAN B&W S90w市场的需求引导着技术进步的方向 经济的全球一体化需要大规模的跨洋物流,从而要求船舶大型化、快速化这就要求柴油机的功率迅速增长(因为柴油机的功率必需与螺旋桨转速的三次方成正比)——特别是集装箱船,不仅装箱数增多,而且航速要求提高到24~25kn例如建造装运TEU12000个,航速23~24kn的集装箱船,要求单机功率近100,000kW wThe Hamburg Express,the world's largest container ship,carries up to TEU7500,powered by a huge 12K98MC,70,000kW Diesel Engine—远洋轮的需求导致低速柴油机巨人的出现 由于螺旋桨转速低时,效率较高,而较低的转速也有利于燃料的燃烧。
因此出现了60~70rpm/min的低速柴油机,柴油机的高度达到15米以上 ,这种机型称为低速二冲程发动机,广泛地用于远洋船舶——军事上的需求导致了增压技术的发展:在有限的空间和重量下发出最大功率 早期的柴油机都是自然吸气的,在发动机气缸内,有限的空气只能燃烧有限的油,从而只能发出有限的功率•增压(Supercharging)是指把空气压缩,密度增大后再进入发动机气缸如此,气多、油多,功率自然增加•增压技术的突破是在上世纪50年代初,至今非增压的柴油机除了在部分车辆上还有使用外,在船舶上已经绝迹w燃烧的技术是柴油机最重要的核心技术——燃烧必须及时,并在以毫秒计的时间内结束——燃烧必须完全,不能有黑烟、CO、NOx等有害排放——燃烧必须平顺,以减少振动和噪声——对于燃烧过程的认识并未穷尽,对于燃烧的控制也远未达到完善w能源危机与重油的应用 在运价激烈的竞争中,船东提出了降低燃料费用的要求 降低燃料费用一个重要措施是使用低品质的燃料油(Fuel Oil),柴油(Diesel Oil)和燃料油的价格相差一倍以上 这就导致了重油技术的诞生,今天这一技术已经从低速机普及到中速机。
三、船用柴油机技术现状The State of the Art of Marine Diesel Enginew自从柴油机诞生以来,技术性能已经发生了极大的变化:——效率已经从25%提高到50%,在近十年来,每年提高1%这意味着用同样的油现在可以产生一倍以上的马力——平均压力从0.5~0.6MPa提高到2.5MPa,这意味着同样大小的柴油机现在可以产生四倍的马力新的技术和方法New Technologies & Solutions高新技术正在改变着传统柴油机的面貌w电子控制及IT技术——常规的机械控制装置被取代——各种芯片、传感器、控制器、执行器成为 发动机运行的灵魂——遥控、无人机舱、一人船桥(One Man Bridge) —— 智能发动机及中央能量管理系统(Intelligent Engine)——新的世纪:电子控制的智能发动机的时代已经来临,MAN的智能发动机2000年11月已经在挪威的一艘37500dwt化学品船上试用船舶电力推进技术的历史与发展 传统的船舶动力系统 柴油机与推进器机械连接的缺点:1、主机的功率必须按船舶最高航速配置,当工作在低速时,柴油机的效率迅速降低。
原动机负载低时效率低是不可避免的,这就象大马拉小车一样因而机动性要求高的船舶,例如军舰、邮轮、各种工作船舶,其油耗高成为难以解决的顽症 2、柴油机不能工作在最低稳定转速之下(当转速太低时,柴油机会失火)对于操纵性要求高,需要动态定位的船舶无法满足要求(海上钻井、电缆敷设、海上输油)另外在低转速下也发不出大的扭矩(破冰船),没有制动功能和迅速正倒车 3、主机与推进器刚性连接,制约了机舱优化布置,占据了巨大空间,传统的舵—螺旋桨的推进效率低于电力推进船舶的吊舱推进器 以上缺点,正好是电力推进船舶的优点电力推进船舶的优点•机动性:巡航时,可以关闭部分或大部分发电机组•操纵性:现代控制器驱动的推进器可以在零转速附近工作,并具有大扭矩,并有制动功能•柔性布置:可以把推进电机放在艉水下吊舱内和螺旋桨连接,吊舱可以360°旋转•舒适性:振动、噪声小、隐蔽性好电力推进船舶的市场趋势w包括核动力在内的新一代军用舰船将无一例外地采用电力推进及综合电力系统美国会已经通过听证,同意弗吉尼亚级核潜艇采用综合电力系统w油价的高企可能使电力推进迅速用于新的领域w将广泛应用于滚装船、邮轮、集装箱船、化学品及LNG船、高速船、离岸工作船(钻井船)等w在民用船方面,电力推进系统的产值目前仍约占15%左右,约USD800M。
预测至2013年电力推进系统的产值将增长5~6倍,达到USD4bn~5bn,约为现有动力系统总产值的70~80% 尽管如此,船舶电力推进发展的历史却颇为曲折 由于结构简单的交流电机其转速取决于电网的工作频率,而变频问题长期来未能解决因此几十年来船舶电力推进只是用在军舰及特种用途船舶上,而未成为推进动力的主流交流电机最简单的的原理概括如下: 将交流电导入电机的定子绕组,可产生旋转的磁场,该磁场将以与交流电频率相应的角速度旋转当转子也产生磁场时,这二个磁场磁力的作用将使转子跟随定子磁场旋转而旋转如果交流电的频率不变则电机转速不变船舶电力推进技术的发展史 人们在200年前发现了电,在150年前发明了发动机,其原理简单地说来即为电生磁、磁生力通过磁场的媒介,电能可以转变为机械能反之亦然 -1795年,富兰克林发现电流 -1800年,伏尔泰发明电池,人类第一次有了可使用的电能-1831年,法拉第发现电磁感应,打开了电能与机械能的转换之门-1834年,Davenport发明了第一台使用电刷及半圆环(机械换流器)的直流电动机,并用伏尔泰电池为电源作了电力机车模型,正是这个模型使卡尔.马克思欣喜若狂-1882年,爱迪生采用同样的原理用蒸汽机作为原动机发电,并将直流电用于照明-1886年,William Stanley发明变压器-1882~1892年,Nikola Telsa发现旋转磁场原理,发明无刷的交流感应电动机及发电机,并实现了多相功率配送,开始了爱迪生与威斯汀豪斯的交、直流之战:The War of Currents。
最终爱迪生失败 —1900年10月12日,第一艘美海军潜水艇下水,采用汽油机和电动机驱动,载重64吨,航速6节 - 1911年 , 第 一 艘 柴 油 机 船 下 水 ( 二 冲 程4x250/370) -1913年,第一艘柴油-电力推进船Tynemount下水,1644吨,300HP/400RPM但因起动负载过大而未成功,1914年改装,1916年被击沉于大西洋-1917年,世界大战爆发刺激了海军的发展,期间电力推进在舰船中得到了很快的发展电力推进的德国潜艇击沉了共650万吨商船;美新墨西哥级战斗舰为蒸汽透平电力推进,功率已达40,000HP-1918年电力在世界的迅速应用,使得列宁说出了“共产主义等于苏维埃+电气化”的名言 -1920年,S/S NOMANDY 邮轮下水,功率达到29MW,采用蒸汽透平为原动机,以同步发电机及同步电动机组成的电力传动来带动螺旋桨而同期使用电力推进的航空母舰其功率已达到180,000HP -1934年,第一艘使用变距浆的船只下水在其专利问世30年以后的这项技术,使交流电机可能用于电力推进 -第二次世界大战期间:约有300艘水面舰艇采用电力推进技术。
而主要的技术方案或为交流同步电力传动,或为直流发电、直流电动机驱动由于其固有缺点,因而限制了其应用在民用船方面,除了豪华轮及破冰船之外,很少采用而柴油机潜艇只有采用电力推进,因为在水下航行电池是唯一的能源在二战中惨烈的大西洋之战,德国有千余艘潜艇击沉而其水下航速仅6节/小时此后在军用方面,1960年美建造了电力推进的Tullibee号核潜艇(1988年退役),1974年建造了Lipscomb号核潜艇但这些传统的电力推进装置维修困难,性能不佳,并不成功 -1947年,美贝尔实验室发现半导体这是二十世纪最伟大的发明之一,以至于我们可以把二十世纪的后五十年称为硅世纪期间,半导体的应用向着两个极端的领域迅猛发展在微电子方面,大规模集成电路的硅芯片(wafer core)是构成全部的绚烂的信息世界的基础;而在强电的转换和传递方面,可控硅的应用使大功率电能的电子控制得以实现,产生了一门新的学科Power Electronics 今天,由于大功率可控硅技术的突破,人们可以用毫安级的微电流来控制几千安的强大电流,并且在微秒级的时间内使之导通或关闭利用这些高速的大功率电子开关,人们可以轻易地改变交流电的瞬态波形。
包括频率、电压和相位用这样的变频器来驱动推进电机,可以满足任何需要,包括转速和扭矩 船舶推进电机通常是和螺旋桨直联,最大功率已达43,000kW(43 MW)电压通常为6600伏~11000伏,电流达数千安以上 当强大的电流通过时,即使优良的铜导线也会产生大量的热,大电流成为电机功率最主要的制约因素,此时只有增加电缆截面积和增加散热面积而这将引起电机重量和体积的增大目前2万千瓦推进电机的外径都在3米以上此外,减少电能与机械能转换中的损失也一直是技术进步的目标 超导技术的突破可以大大提高传统电机的性能这对舰艇尤为重要高温超导(HTS:High Temperature Superconductor )技术 将超导体用于电机以减少铜损和铁损并缩小电机的体积与重量,在上世纪末取得了重大的突破这主要是基于高温超导体材料的最新成果人类早在1911年就发现水银在4K时有超导特性,但直至1986年以后才发现了某些氧化物陶瓷可以在较高温度下具有超导特性其中包含美籍华人科学家Daul. Chu的功绩 所谓高温超导体是指在50K以上,在临界电流临界磁通以下,电阻为零的导体。
由于其临界温度高于液氮的温度43K,因而可以用液氮冷却来保持材料的超导目前以氧化铜为基的Ti2Ba2Ca2Cu3O10的临界温度为125K,而其电流密度约为铜导线的140倍,1000A/mm2第二代HTS导线是一种约4厘米的宽带2007年12月美国超导公司具有30万米生产能力美国海军大力投资发展HTS电机2003年投资AS7000万美元制造36.5MW的HTS马达,投资GE制造100MVA的GENSETS;法国阿尔斯通则制造20MWHTS马达而5800HP/ 1800RPM的HTS Motor则已经成功运行美国AS公司制造的5MW的HTS电机HTS Motor的优点包括:w重量和体积缩小,重量减轻1/3以上在大功率电机中可减少2/3w铜损和铁损减小,使效率提高,尤其是在部分负荷时永磁(PM:Permanent Magnetic)电机 大功率的推进电机也需要强大的磁场,转动螺旋桨的扭矩正是由磁力所产生传统电机中的磁场都是由带有铁芯的线圈(绕组)通电后产生的但是向转动着的绕组通电是很困难的事 在永磁材料方面的突破,可以轻易地克服这一困难永磁材料就是一旦充磁后就不会退磁的材料。
w永磁电机是美国人Howard Johnson在1979年发明的,当时美国专利局对其专利申请的评审员认为其发明违背了能量守恒定律,不过这一专利最终还是获得了通过永磁马达也被称为HJmotor在永磁材料方面也有很大突破过去永磁性材料是以钴、铂等为主要材料,价格昂贵,钴的主要产地在刚果(扎伊尔),主要用于信息产业1983年发现以稀土金属铷为主要元素的铷铁硼材料具有极其优越的抗矫磁性而这一材料十分便宜,其资源主要在中国内蒙,中国永磁材料的生产量2010年已经占1/3以上而在2010年更占稀土矿生产的70%w永磁材料也可以和其它技术相结合用于船舶电力推进2003年ABB公布已经可以生产5000kW的吊舱永磁电机在海军正在建造的高温超导体电机中很多都同时采用了永磁材料2002年西南交大成功研制了磁悬浮永磁、高温超导机车永磁电机的优点:w转子无铁芯,转动惯量小,响应快;w无电刷即集流环吊舱推进技术的发展(Podded Propulsion) Pod指吊于船外的水下舱室,室内有推进电机,通过轴系及推进轴承和推进器,电机与母船只有动力电缆及通信电缆相连接 Fix Pod与Azipod: Azipod指可沿Z轴360º旋转动的吊舱,其中Azi-指Azimurth。
Azimurth传动过去由锥齿轮系组成的Z-drive实现,后来又用于侧推器(Thruster)在上世纪九十年代中期ABB率先将Azimurth概念用于主电力推进其后又提出了对向反转吊舱推进装置的概念 生产吊舱系统的著名公司: ABB Industry(Azipod) Rolls-Royce (Mermaid) Schottel-Siemens (SSP) John Cranelips (Dolphin)Azipod技术充分发挥了电力推进系统的优势,因此几年来得到了飞速的发展吊舱的结构如图所示面临的挑战The Challenges船舶动力装置所面临的挑战:1、安全 Safety 船舶及其货值愈益昂贵,常以10亿元计;出现事故时伴随着重大污染;船员数量减少,现场处理几乎不可能 解决方案 Solutions:(1)驾驶遥控,无人值班机舱2)智能化的监控系统及故障诊断3)故障出现后的自我保护2、节能 Engine Saving 化石燃料的供应,全球性不足的时代已经来临全球油价高企,燃料成本已经超过全部开销的30%。
解决方案 Solutions:(1)船舶大型化;根据船舶的用途,采用先进的船舶动力系统2)科学用能:船舶是一个独立的能岛,要建立科学的能量管理系统,以杜绝浪费例如要杜绝以电供热,以电致冷3、环保 人类正在面临全球气候突变的威胁CO2的过量排放,温室效应,全球变暖,是罪魁祸首中国每年排放40亿吨CO2,仅次于美国京都议定书要求各国降低CO2排放 NOx及SOx都是化石燃料燃烧的产物,会引起酸雨、光化学烟雾等后果,国际公约对其排放均有要求 水污染方面,各国对油污水排放都有严格标准对于压载水,为避免不同水域中生态破坏,要求在深海中交换压截水 解决方案 Solutions:(1)各种进化器的使用(2)排放的控制技术对未来的展望 人类在取得先进文明的同时,大大地透支了在地质年代中形成和浓缩的太阳能——化石燃料在人类的历史长河中化石燃料(石油、煤炭、天然气)只能是短暂的昙花一现 能够长期使用的只能是可再生能源例如太阳能、风能、水能、生物能等但是这些能量大都密度很小。
它可以用于陆上的发电装置,但不适于用作航海液体燃料和核燃料(其资源也极有限)仍然作为高密度的能源被长期使用,直到可再生的高强度储能装置被发明为止。
