好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

数学建模中权重的确定方法.ppt

48页
  • 卖家[上传人]:枫**
  • 文档编号:588822424
  • 上传时间:2024-09-09
  • 文档格式:PPT
  • 文档大小:775KB
  • / 48 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 权重的确定方法权重的确定方法-----建模协会 标准化(归一化)•极值线形模式极值线形模式:新数据=(原数据-极小值)/(极大值-极小值)•均值标准差模式均值标准差模式:新数据=(原数据-均值)/标准差•对数对数Logistic模式模式:新数据=1/(1+e^(-原数据))•模糊量化模式模糊量化模式:新数据=  1/2+1/2sin[派3.1415/(极大值-极小值)*(X-(极大值-极小值)/2) ]       X为原数据 权重•权重是一个相对的概念,是针对某一指标而言某一指标的权重是指该指标在整体评价中的相对重要程度  •自重权数:以权数作为指标的分值(或分数),或者以权数直接作为等级的分值 •加重权数:在各指标的已知分值(即自重权数)前面设立的权数 a.  专家咨询权数法(特尔斐法)•该法又分为平均型、极端型和缓和型主要根据专家对指标的重要性打分来定权,重要性得分越高,权数越大优点是集中了众多专家的意见,缺点是通过打分直接给出各指标权重而难以保持权重的合理性  b.因子分析权数法   •根据数理统计中因子分析方法,对每个指标计算共性因子的累积贡献率来定权累积贡献率越大,说明该指标对共性因子的作用越大,所定权数也越大。

      c.信息量权数法•根据各评价指标包含的分辨信息来确定权数采用变异系数法,变异系数越大,所赋的权数也越大  计算各指标的变异系数,将CV作为权重分值,再经归一化处理,得信息量权重系数 d.独立性权数法•利用数理统计学中多元回归方法,计算复相关系数来定权的,复相关系数越大,所赋的权数越大•计算每项指标与其它指标的复相关系数,计算公式为,                                                                                           R越大,重复信息越多,权重应越小取复相关系数的倒数作为得分,再经归一化处理得权重系数 e.主成分分析法•一种多元分析法它从所研究的全部指标中,通过探讨相关的内部依赖结构,将有关主要信息集中在几个主成分上,再现指标与主成分的关系,指标Xj的权数为:       wj=dj·bij∑mj=1dj·bij           其中bij为第i个主成分与第j个因素间的系数,di=λi/Σλk为贡献率 f.层次分析法(AHP法)•层次分析法是一种多目标多准则的决策方法,是美国运筹学家萨迪教授基于在决策中大量因素无法定量地表达出来而又无法回避决策过程中决策者的选择和判断所起的决定作用,于20世纪70年代初提出的。

      此法必须将评估目标分解成一个多级指标,对于每一层中各因素的相对重要性给出判断它的信息主要是基于人们对于每一层次中各因素相对重要性作出判断 •这种判断通过引入1~9比率标度进行定量化该法的优点是综合考虑评价指标体系中各层因素的重要程度而使各指标权重趋于合理;缺点是在构造各层因素的权重判断矩阵时,一般采用分级定量法赋值,容易造成同一系统中一因素是另一因素的5倍、7倍,甚至9倍,从而影响权重的合理性 g.优序图法•设n为比较对象(如方案、目标、指标)的数目,优序图是一个棋盘格的图式共有n×n个空格,在进行两两比较时可选择1,0两个基本数字来表示何者为大、为优1”表示两两相比中相对“大的”、“优的”、“重要的”,而用“0”表示相对“小的”、“劣的”、“不重要的”以优序图中黑字方格为对角线,把这对角线两边对称的空格数字对照一番,如果对称的两栏数字正好一边是1,而另一边是0形成互补或者两边都为0.5,则表示填表数字无误,即完成互补检验满足互补检验的优序图的各行所填的各格数字横向相加,分别与总数T(T=n(n-1)/2)相除就得到了各指标的权重 h.熵权法•熵最先由申农引入信息论,现已在工程技术、社会经济等领域得到比较广泛的应用。

      其基本思路是根据指标变异性的大小来确定客观权重一般来说,某个指标的信息熵Ej越小,表明指标值的变异程度越大,提供的信息量越多,在综合评价中所起的作用越大,其权重也越大相反,某个指标的信息熵Ej越大,表明指标值的变异程度越小,提供的信息量越少,在综合评价中所起的作用越小,其权重也越小把实际数据进行标准化后转变为标准化数据dij后,依据以下公式计算第j项指标的信息熵:         Ej=-(lnm)-1∑mi=1pijlnpij         其中m为被评价对象的数目,n为评价指标数目,并且pij=dij∑mi=1dij,如果pij=0,则定义limpij→0pijlnpij=0利用熵计算各指标客观权重公式为:•  wj=1-Ejn-∑nj=1Ej   j=1,2,3……n i.标准离差法•标准离差法的思路与熵权法相似通常,某个指标的标准差越大,表明指标值的变异程度越大,提供的信息量越多,在综合评价中所起的作用越大,其权重也越大相反,某个指标的标准差越小,表明指标值的变异程度越小,提供的信息量越少,在综合评价中所起的作用越小,其权重也应越小其计算权重的公式为:       •wj=σj∑nj, j=1,2,3,……n j.CRITIC法   该法的基本思路是确定指标的客观权数以评价指标间的对比强度和冲突性为基础。

      对比强度以标准差的形式来表现,即标准差的大小表明在同一指标内,各方案取值差距的大小标准差越大,各方案之间取值差距越大而各指标间的冲突性是以指标之间的相关性为基础若两个指标之间具有较强的正相关,说明两个指标冲突性较低第j个指标与其它指标冲突性的量化指标为∑nt=1(1-rij)其中rij为评价指标t和j之间的相关系数设Cj表示第j各指标所包含的信息量,则Cj可表示为: •Cj=σj∑nt=1(1-rij)    j= 1,2,3,……n         •Cj越大,第j个评价指标所包含的信息量越大,该指标的相对重要性就越大第j个指标的客观权重Wj应为:  wj=Cj∑nj=1Cj   j= 1,2,3,……n k.非模糊数判断矩阵法•非模糊数判断矩阵法是通过把三角模糊数判断矩阵转化为非模糊数,将新矩阵调整为互反矩阵,同时对其一致性进行检验,再利用AHP法来确定权重的一种方法         设三角模糊数M1=(l1,m1,u1),M2=(l2,m2,u2) →建立单位模糊判断矩阵→集结单位模糊判断矩阵建立三角模糊判断矩阵→将三角模糊数转化为非模糊数→对互反性进行调整运用AHP法计算即可得到评价因素的权重集。

               该方法以三角模糊数判断矩阵为基础,通过一系列的数学处理转换,得到模糊综合评价因素权重,使确定因素权重过程中的主观判断更符合人们的思维习惯与表达方式,在一定程度上改善了传统模糊综合评价的某些缺陷,使该方法的准确性和有效性得到一定的提高 1. 算术平均法算术平均法§1 专家评估统计法专家评估统计法 2. 频数统计法频数统计法 3. 加权统计法加权统计法加权统计法的前两步(加权统计法的前两步(1),(),(2)同频数统)同频数统计法 层次分析是一种决策分析的方法它结合了层次分析是一种决策分析的方法它结合了定性分析和定量分析,并把定性分析的结果量化定性分析和定量分析,并把定性分析的结果量化§2 层次分析法层次分析法(The Analytic Hierarchy process,简称简称AHP) 人们在日常生活和工作中,常常会遇到在多种方案人们在日常生活和工作中,常常会遇到在多种方案中进行选择问题例如假日旅游可以有多个旅游点供选中进行选择问题例如假日旅游可以有多个旅游点供选择;毕业生要选择工作单位;工作单位选拔人才;政府择;毕业生要选择工作单位;工作单位选拔人才;政府机构要作出未来发展规划;厂长要选择未来产品发展方机构要作出未来发展规划;厂长要选择未来产品发展方向;科研人员要选择科研课题向;科研人员要选择科研课题…… 人们在选择时,最困难的就是在众多方案中都不人们在选择时,最困难的就是在众多方案中都不是十全十美的是十全十美的,往往这方面很好,其它方面就不十分满往往这方面很好,其它方面就不十分满意,这时,比较各方案哪一个更好些,就成为首要问题意,这时,比较各方案哪一个更好些,就成为首要问题了。

      了 例例1 1 某家庭预备某家庭预备 “五五·一一”出游,手上有三个旅游点的资出游,手上有三个旅游点的资料u1点景色优美,但点景色优美,但u1是一个旅游热点,住宿条件不十是一个旅游热点,住宿条件不十分好分好, 费用也较高;费用也较高;u2点交通方便点交通方便, 住宿条件很好,价钱也住宿条件很好,价钱也不贵,只是旅游景点很一般;不贵,只是旅游景点很一般;u3点旅游景点不错点旅游景点不错, 住宿、住宿、花费都挺好,就是交通不方便究竟选择哪一个更好呢?花费都挺好,就是交通不方便究竟选择哪一个更好呢? 在这个问题中,首先有一个目标在这个问题中,首先有一个目标——旅游选择;其次旅游选择;其次是选择方案的标准是选择方案的标准——景点好坏、交通是否方便、费用高景点好坏、交通是否方便、费用高低、住宿条件等;第三个是可供选择的方案低、住宿条件等;第三个是可供选择的方案 一、建立递阶层次结构一、建立递阶层次结构 层次分析一般把问题分为三层,各层间关系用线层次分析一般把问题分为三层,各层间关系用线连接第一层称为目标层,第二层为准则层,第三层连接第一层称为目标层,第二层为准则层,第三层叫做方案层。

      如果有次级标准还可以增加次准则层等叫做方案层如果有次级标准还可以增加次准则层等 例如,上面例子的递阶层次结构为:例如,上面例子的递阶层次结构为:景点景点旅游旅游住宿住宿费用费用交通交通u1u2u3———— 目标层目标层———— 准则层准则层———— 方案层方案层 为了把这种定性分析的结果量化,为了把这种定性分析的结果量化,20世纪世纪70年代,美年代,美国数学家国数学家 Saaty等人首先在层次分析中引入了九级比例标等人首先在层次分析中引入了九级比例标度和两两比较矩阵度和两两比较矩阵二、构造两两比较判断矩阵二、构造两两比较判断矩阵 两个元素相互比较时,以其中一个元素作为两个元素相互比较时,以其中一个元素作为1(如如ui),,如果相对上一层如果相对上一层,ui与与uj比较比较,好坏好坏相同相同,则,则uj记为记为1;;uj比比 ui较好较好, uj记为记为3;uj比比ui好好,uj记为记为5;;uj比比ui明显好明显好,,uj记为记为7;如果如果uj比比ui好的多好的多,则,则uj记为记为9; 2, 4, 6, 8则是介于则是介于1,3,5,7,9之间的情况。

      之间的情况 把与上层某元素有关系的所有下层元素逐一把与上层某元素有关系的所有下层元素逐一比较,且每一个元素与各元素比较的结果排成一比较,且每一个元素与各元素比较的结果排成一行则可得到一个方阵行则可得到一个方阵A=(aij)n×n,称为两两比较矩,称为两两比较矩阵设ui与与uj比为比为aij,,则则uj与与ui比应为比应为aji=1/aij , 所所以两两比较矩阵以两两比较矩阵A也称为正互反矩阵如例也称为正互反矩阵如例1 建建立层次分析模型:立层次分析模型: 景点景点旅游旅游住宿住宿费用费用交通交通u1u2u3 如果我们通过判断矩阵如果我们通过判断矩阵A1, 可以准确的确定可以准确的确定u1 ,u2 ,u3 相对相对“景点景点”的权重的权重, 就可以通过对就可以通过对“景点景点”“住住宿宿”“费用费用”“交通交通”等所有考虑到的因素权重等所有考虑到的因素权重, 再通过再通过这些因素相对目标的权重这些因素相对目标的权重, 最后确定出各方案对目最后确定出各方案对目标的权重标的权重 三、由判断矩阵计算元素对于上层支配元素的权重(或三、由判断矩阵计算元素对于上层支配元素的权重(或排序)排序) 用判断矩阵求权重的方法有很多种,用判断矩阵求权重的方法有很多种,下面介绍三种方法:下面介绍三种方法:1. 和法和法2. 最小夹角法最小夹角法3. 特征向量法特征向量法 1. 和法和法 2. 最小夹角法最小夹角法 3. 特征向量法特征向量法 但在实际问题中很难使但在实际问题中很难使A满足一致性。

      虽然满足一致性虽然AHP并不并不要求判断矩阵具有完全的一致性,但是偏离一致性要要求判断矩阵具有完全的一致性,但是偏离一致性要求过大的判断矩阵所作出的最终决策也会于实际情况求过大的判断矩阵所作出的最终决策也会于实际情况偏差太大,因此有必要对判断矩阵进行一致性检验偏差太大,因此有必要对判断矩阵进行一致性检验 五、计算最底层元素对目标的权重(排序)向量五、计算最底层元素对目标的权重(排序)向量在上述步骤中得到的是各层元素对上层元素的权重(排在上述步骤中得到的是各层元素对上层元素的权重(排序)向量序)向量 ,而我们的目的却是要得到最底层元素对目,而我们的目的却是要得到最底层元素对目标的权重(排序)向量标的权重(排序)向量 ,这就须将已经得到的权重,这就须将已经得到的权重(排序)向量进行合成,从而得到综合权重(排序)向(排序)向量进行合成,从而得到综合权重(排序)向量量 以下就三层的情况来介绍这种方法以下就三层的情况来介绍这种方法 最大特征值和对应正特征向量分别为:最大特征值和对应正特征向量分别为:λ=3.002,,X=(5.903867500, 0.8066923031, 3.086293726)Tλ=3.080,,X=(0.0846216595,0.4466019878,0.6734288503)Tλ=3.094,,X=(0.09138978270, 0.3366828382, 0.4961400716)Tλ=3.065,,X=(3.658853431, 8.514030366, 0.943422178)Tλ=4.0155, X=(9.15749285,3.529892637,3.90998156,1.8409641)T 特征向量归一化得第三层特征向量归一化得第三层3个元素对第二层个元素对第二层4个元素的权个元素的权重重(排序)(排序)向量为:向量为: W1=(0.6028,0.08236,0.3151)T,,W2=(0.07023,0.3706,0.5589)T W3=(0.09888,0.3643,0.5368]T,,W4=[0.2791,0.6494,0.07196)T第二层第二层4个元素对目标的权重(排序)向量为个元素对目标的权重(排序)向量为 W(2)= (0.4966, 0.1914, 0.2120, 0.0998)T第三层第三层3个元素对元素对目标的权重(排序)向量为个元素对元素对目标的权重(排序)向量为::W(3)= 0.4966W1+0.1914W2+0.212W3+0.0998W4 = (0.3617, 0.2538, 0.3845)T 由计算结果和最大隶属原则,由计算结果和最大隶属原则,u1、、u2、、u3三个三个旅游点相对旅游目标来说,综合排序结果是:旅游点相对旅游目标来说,综合排序结果是:u3点为首选,点为首选,u1次之,次之,u2点最后。

      点最后 如果如果u1、、u2、、u3不是三个旅游点而是三个元素,不是三个旅游点而是三个元素,则最后的结果:则最后的结果:(0.3617, 0.2538, 0.3845)就是三个元素的权重向量就是三个元素的权重向量。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.