好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

黑龙江省伊春市2025学年高中毕业生调研测试数学试题.doc

18页
  • 卖家[上传人]:东***
  • 文档编号:593904267
  • 上传时间:2024-10-12
  • 文档格式:DOC
  • 文档大小:3.30MB
  • / 18 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 黑龙江省伊春市2025学年高中毕业生调研测试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上3.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.函数的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为( )A. B. C.2 D.2.设集合(为实数集),,,则( )A. B. C. D.3.数列满足,且,,则( )A. B.9 C. D.74.已知,则( )A. B. C. D.5.已知复数z满足(i为虚数单位),则z的虚部为( )A. B. C.1 D.6.复数为纯虚数,则( )A.i B.﹣2i C.2i D.﹣i7.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )A. B.C. D.8.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是( )A.16 B.12 C.8 D.69.已知集合,,,则( )A. B. C. D.10.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分不必要条件11.一个陶瓷圆盘的半径为,中间有一个边长为的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率的值为(精确到0.001)( )A.3.132 B.3.137 C.3.142 D.3.14712.已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则( )A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。

      13.已知数列的各项均为正数,记为数列的前项和,若,,则______.14.已知点为双曲线的右焦点,两点在双曲线上,且关于原点对称,若,设,且,则该双曲线的焦距的取值范围是________.15.已知函数f(x)=axlnx﹣bx(a,b∈R)在点(e,f(e))处的切线方程为y=3x﹣e,则a+b=_____.16.的展开式中常数项是___________.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)如图,四棱锥中,底面ABCD为菱形,平面ABCD,BD交AC于点E,F是线段PC中点,G为线段EC中点.Ⅰ求证:平面PBD;Ⅱ求证:.18.(12分)如图,在三棱柱中,、、分别是、、的中点.(1)证明:平面;(2)若底面是正三角形,,在底面的投影为,求到平面的距离.19.(12分)已知函数.(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围.20.(12分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.(1)求动点的轨迹的方程;(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.21.(12分)如图,在四棱锥中,四边形为正方形,平面,点是棱的中点,,.(1)若,证明:平面平面;(2)若三棱锥的体积为,求二面角的余弦值.22.(10分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。

      在每小题给出的四个选项中,只有一项是符合题目要求的1、C【解析】由函数的图象向右平移个单位得到,函数在区间上单调递增,在区间上单调递减,可得时,取得最大值,即,,,当时,解得,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出,根据函数在区间上单调递增,在区间上单调递减可得时,取得最大值,求解可得实数的值.2、A【解析】根据集合交集与补集运算,即可求得.【详解】集合,,所以所以故选:A【点睛】本题考查了集合交集与补集的混合运算,属于基础题.3、A【解析】先由题意可得数列为等差数列,再根据,,可求出公差,即可求出.【详解】数列满足,则数列为等差数列,,,,,,,故选:.【点睛】本题主要考查了等差数列的性质和通项公式的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.4、D【解析】根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案.【详解】因为,所以,所以是减函数,又因为,所以,,所以,,所以A,B两项均错;又,所以,所以C错;对于D,,所以,故选D.【点睛】这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.5、D【解析】根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.6、B【解析】复数为纯虚数,则实部为0,虚部不为0,求出,即得.【详解】∵为纯虚数,∴,解得. .故选:.【点睛】本题考查复数的分类,属于基础题.7、D【解析】设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【详解】由题意,设,则,即小正六边形的边长为,所以,,,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题.8、B【解析】根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果.【详解】由题可知:该几何体的底面正三角形的边长为2所以该正三棱柱的三个侧面均为边长为2的正方形,所以该正三棱柱的侧面积为故选:B【点睛】本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比如:三棱锥,圆锥,圆柱等,属基础题.9、A【解析】求得集合中函数的值域,由此求得,进而求得.【详解】由,得,所以,所以.故选:A【点睛】本小题主要考查函数值域的求法,考查集合补集、交集的概念和运算,属于基础题.10、A【解析】试题分析:α⊥β, b⊥m又直线a在平面α内,所以a⊥b,但直线不一定相交,所以“α⊥β”是“a⊥b”的充分不必要条件,故选A.考点:充分条件、必要条件.11、B【解析】结合随机模拟概念和几何概型公式计算即可【详解】如图,由几何概型公式可知:.故选:B【点睛】本题考查随机模拟的概念和几何概型,属于基础题12、D【解析】根据X的分布列列式求出期望,方差,再利用将方差变形为,从而可以利用二次函数的性质求出其最大值为,进而得出结论.【详解】由X的分布列可得X的期望为,又,所以X的方差,因为,所以当且仅当时,取最大值,又对所有成立,所以,解得,故选:D.【点睛】本题综合考查了随机变量的期望、方差的求法,结合了概率、二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

      13、63【解析】对进行化简,可得,再根据等比数列前项和公式进行求解即可【详解】由数列为首项为,公比的等比数列,所以63【点睛】本题考查等比数列基本量的求法,当处理复杂因式时,常用基本方法为:因式分解,约分但解题本质还是围绕等差和等比的基本性质14、【解析】设双曲线的左焦点为,连接,由于.所以四边形为矩形,故,由双曲线定义可得,再求的值域即可.【详解】如图,设双曲线的左焦点为,连接,由于.所以四边形为矩形,故.在中,由双曲线的定义可得,.故答案为:【点睛】本题考查双曲线定义及其性质,涉及到求余弦型函数的值域,考查学生的运算能力,是一道中档题.15、0【解析】由题意,列方程组可求,即求.【详解】∵在点处的切线方程为,,代入得①.又②.联立①②解得:..故答案为:0.【点睛】本题考查导数的几何意义,属于基础题.16、-160【解析】试题分析:常数项为.考点:二项展开式系数问题.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17、(1)见解析;(2)见解析.【解析】分析:(1)先证明,再证明FG//平面PBD. (2)先证明平面,再证明BD⊥FG.详解:证明:(1)连结PE,因为G.、F为EC和PC的中点, , 又平面,平面,所以平面 (II)因为菱形ABCD,所以,又PA⊥面ABCD,平面,所以,因为平面,平面,且,平面,平面,∴BD⊥FG .点睛:(1)本题主要考查空间位置关系的证明,意在考查学生对这些基础知识的掌握水平和空间想象转化能力.(2)证明空间位置关系,一般有几何法和向量法,本题利用几何法比较方便.18、(1)证明见解析;(2).【解析】(1)连接,连接、交于点,并连接,则点为的中点,利用中位线的性质得出,,利用空间平行线的传递性可得出,然后利用线面平行的判定定理可证得结论;(2)推导出平面,并计算出,由此可得出到平面的距离为,即可得解.【详解】(1)连接,连接、交于点,并连接,则点为的中点,、分别为、的中点,则,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影为,平面,平面,,为正三角形,且为的中点,,,平面,且,因此,到平面的距离为.【点睛】本题考查线面平行的证明,同时也考查了点到平面距离的计算,考查推理能力与计算能力,属于中等题.19、(1)增区间为,减区间为;(2).【解析】(1)将代入函数的解析式,利用导数可得出函数的单调区间;(2)求函数的导数,分类讨论的范围,利用导数分析函数的单调性,求出函数的最值可判断是否恒成立,可得实数的取值范围.【详解】(1)当时,,则,当时,,则,此时,函数为减函数;当时,,则,此时,函数为增函数.所以,函数的增区间为,减区间为;(2),则,.①当时,即当时,,由,得,此时,函数为增函数;由,得,此时。

      点击阅读更多内容
      相关文档
      2025届湖北省新八校协作体高三下学期10月联考-化学试题(含答案).docx 2025届河南省青桐鸣高三下学期10月大联考-历史试题(含答案).docx 2025届湖北省“酷云”联盟高三下学期10月联考-语文试题(含答案).docx 2025届湖北省“酷云”联盟高三下学期10月联考-生物试题(含答案).docx 2025届八省联考教研联盟高三下学期演练统一监测考-语文试卷(含答案).docx 2025届河南省青桐鸣高三下学期10月大联考-地理试题(含答案).docx 2025届湖北省“酷云”联盟高三下学期10月联考-政治试题(含答案).docx 2025届湖北省“酷云”联盟高三下学期10月联考-物理试题(含答案).docx 2025届河南省高三上学期联考(二)-语文试题(含答案).docx 2025届河南省高三上学期联考(二)-生物试题(含答案).docx 2025届广东省联考高三上学期10月月考-历史试题(含答案).docx 2025届八省联考教研联盟高三下学期演练统一监测考-物理试卷(含答案).docx 2025届河南省高三上学期联考(二)-物理试题(含答案).docx 2025届“江南十校”新高三下学期10月第一次综合素质考-数学试题(含答案).docx 2025届“江南十校”新高三下学期10月第一次综合素质考-政治试题(含答案).docx 2025届河南省高三上学期联考(二)-政治试题(含答案).docx 湖北省腾云联盟2024-2025学年高三上学期8月联考数学试卷(含答案).docx 2025届河南省创新发展联盟高三下学期9月联考-化学试题(含答案).docx 2025届云南省大理民族中学高三上学期开学考-地理试题(含答案).docx 2025届“江南十校”新高三下学期10月第一次综合素质考-英语试题(含答案).docx
      猜您喜欢
      黑龙江齐齐哈尔市2025年高三3月期初测试生物试题含解析.doc 陕西省西安市高新沣东中学2025年高三5月模拟(三模)物理试题文试题.doc 陕西省兴平市秦岭中学2025年高三4月第二次调研测试英语试题理试题含解析.doc 陕西省韩城市2025届高三4月月考数学试题.doc 黄冈八模系列湖北省黄冈市2025届高三下学期中考试语文试题含解析.doc 黑龙江省普通高等学校2025年高三高考考前辅导数学试题(1).doc 陕西省西安市第25中学2025学年高三下学期高考适应性考试(二)数学试题.doc 黄冈市启黄中学2025学年高三第五次月考数学试题文试题.doc 黑龙江哈尔滨市2025学年招生全国统一考试物理试题.doc 陕西省西安市重点中学2025届高三第七次月考物理试题.doc 陕西省靖边县第四中学2025年高三下学期第四次(1月)月考生物试题试卷含解析.doc 陕西省黄陵县黄陵中学2025届高三下学期调研化学试题含解析.doc 青海省海东市2025届高三第五次适应性训练语文试题含解析.doc 陕西省榆林市重点中学2025届高考数学试题3月月考模拟试题.doc 黑龙江宝清第一高中2025届高三3月联合质量检测试题语文试题试卷含解析.doc 陕西省商洛中学2025年高三下学期4月联考生物试题试卷含解析.doc 陕西省渭南市三贤中学2025年高三下学期2月期末统考生物试题含解析.doc 黑龙江省大庆市四中2025届高三分科综合测试卷英语试题(一)含解析.doc 黑龙江省绥化市三校2025学年高三高考最后一卷化学试题含解析.doc 陕西省渭南市三贤中学2025届高三第一次阶段考试物理试题.doc
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.