好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

饮酒驾车模型及matlab实现.ppt

22页
  • 卖家[上传人]:s9****2
  • 文档编号:584136927
  • 上传时间:2024-08-30
  • 文档格式:PPT
  • 文档大小:1.39MB
  • / 22 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 数学实验数学实验7.5 饮酒驾车微分方程模型及非线性拟合实验 数学实验数学实验问题 数学实验数学实验 大李喝下啤酒后,酒精先从肠胃吸收进入血液和体液中,然大李喝下啤酒后,酒精先从肠胃吸收进入血液和体液中,然后从血液和体液向体外排出可以建立二室模型,将肠胃看成后从血液和体液向体外排出可以建立二室模型,将肠胃看成吸收室,将血液与体液看成中心室吸收室,将血液与体液看成中心室( (见下图见下图) )吸收室x1(t)中心室c1(t),Vk1k2吸收排出 吸收和排出的过程都可以简化成一级反应来处理,加起来得到体吸收和排出的过程都可以简化成一级反应来处理,加起来得到体液内酒精吸收和排出过程的数学模型因为考虑到时短时间内液内酒精吸收和排出过程的数学模型因为考虑到时短时间内喝酒,所以忽略喝酒的时间,可使初始条件得以简化喝酒,所以忽略喝酒的时间,可使初始条件得以简化根据上面问题要求,可归结为如下问题:根据上面问题要求,可归结为如下问题:1、建立数学模型,并解释大李在中午、建立数学模型,并解释大李在中午12点喝点喝1瓶啤酒后,在下午瓶啤酒后,在下午6点检查时点检查时体内血液中的酒精含量小于体内血液中的酒精含量小于20mg/10ml,,符合符合“驾车标准驾车标准”。

      2、建立数学模型,并解释大李在晚饭时再喝、建立数学模型,并解释大李在晚饭时再喝1瓶啤酒后,在凌晨瓶啤酒后,在凌晨2点检查时点检查时体内血液中的酒精含量体内血液中的酒精含量不小于不小于20mg/100ml,不符合不符合“饮酒驾车饮酒驾车”的标准 数学实验数学实验 酒精量是指纯酒精的质量,单位为毫克酒精量是指纯酒精的质量,单位为毫克(mg);酒精含量是指纯;酒精含量是指纯酒精的浓度,单位是毫克酒精的浓度,单位是毫克/百毫升百毫升(mg/100ml);;t:时刻时刻(h);;x1(t):在时刻在时刻t吸收室吸收室(肠胃肠胃)内的酒精量内的酒精量(mg);;k1:酒精从吸收室进入中心室的速率系数;酒精从吸收室进入中心室的速率系数;g0:在短时间内喝下在短时间内喝下1瓶啤酒后吸收室内的酒精量瓶啤酒后吸收室内的酒精量(mg);;y1(t):在时刻在时刻t中心室中心室(血液和体液血液和体液)的酒量的酒量(mg);K2:酒精从中心室向体外排出的速率系数酒精从中心室向体外排出的速率系数;V:中心室的容积中心室的容积(100ml). 数学实验数学实验(4)考虑到大李在下午6点接受检查,之后由于离开检查地点以及停车等待等原因耽误了一定时间,因此假定大李在晚8点吃晚饭(即大李从第一次接受检查到第二次喝酒之间相隔了2个小时) 大李在短时间内喝下2瓶啤酒后,酒精先从吸收室(肠胃)进入中心室(血液与体液),然后从中心室向体外排出。

      忽略喝酒时间,并假设:(1)吸收室在初始时刻t=0时,酒精量立即为2g0,酒精从吸收室进入中心室的速率(吸收室在单位时间内酒精量的减少量)与吸收室的酒精量成正比,比例系数为k1.(2)中心室的容积V保持不变;在初始时刻t=0时,中心室酒精量为0;在任意时刻,酒精从中心室向体外排出的速率(中心室的单位时间内酒精量的减少量)与中心室的酒精量成正比,比例系数为k2.(3)在大李(体重为70kg)适度饮酒没有酒精中毒的前提下,假设k1和k2都是常数,与酒精量无关 数学实验数学实验根据假设(根据假设(1),吸收室的酒精量),吸收室的酒精量x1(t)满足微分方程初值问题满足微分方程初值问题根据假设(根据假设(2),中心室的酒精量),中心室的酒精量y1(t)满足微分方程初值问题:满足微分方程初值问题: 数学实验数学实验根据(根据(7.5.1)和()和(7.5.2)得到微分方程组初值问题:)得到微分方程组初值问题:解上述微分方程组初值问题,其解上述微分方程组初值问题,其matlab程序如下:程序如下:[x1,y1]=dsolve('Dx1=-k1*x1','Dy1=k1*x1-k2*y1','x1(0)=N*g(0)','y1(0)=0')[y,how]=simple([x1,y1])y = [N*g(0)*exp(-k1*t), k1*N*g(0)*(exp(-k2*t)-exp(-k1*t))/(k1-k2)]程序运行结果:程序运行结果:程序求解结果整理为:程序求解结果整理为:即即:解为解为返回 数学实验数学实验式(式(7.5.3)可以写成)可以写成当前任务就是,确定k,k1,k2 数学实验数学实验用用MATLAB的函数的函数nlinfit(非线性最小二乘拟合非线性最小二乘拟合),根据赛题所给数据根据赛题所给数据拟合式(拟合式(7.5.4)的参数)的参数k1,k2和和k.此问题的此问题的MATLAB程序如下:程序如下:f=@(k,x)k(3).*(exp(-k(2).*x)-exp(-k(1).*x));x=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16];y=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4];k0=[2,1,80];%参数的初值k=nlinfit(x,y,f,k0)plot(x,y,'r*',0:0.01:18,f(k,0:0.01:18),'k')xlabel(‘时间(h)')ylabel(‘酒精含量')title(‘血液中酒精含量的拟合图')axis([0 18 0 90])legend(‘原始数据’,‘拟合曲线') 数学实验数学实验参数参数k1,,k2和和k的拟合结果为的拟合结果为:k =2.0079 0.1855 114.432524 数学实验数学实验参数的初值设定思路:参数的初值设定思路: fc=@(x)k(3).*(exp(-k(2).*x)-exp(-k(1).*x));figure(2)plot(x,y-fc(x),'ro',[0 18],[0 0],'k')axis([0,18,-10,10]) 数学实验数学实验结果如图:结果如图:从原始数据拟合图、从原始数据拟合图、拟合误差图观察发拟合误差图观察发现拟合效果比较好。

      现拟合效果比较好在拟合误差图中只在拟合误差图中只有一个误差在有一个误差在-10附附近,其他误差值都近,其他误差值都在(在(-6,6)之内,)之内,且分布比较均匀,且分布比较均匀,这说明引入的假设这说明引入的假设和建立的模型比较和建立的模型比较合理 数学实验数学实验7.5.7.1问题问题(1)的应用的应用 在问题(在问题(1)中,大李在中午)中,大李在中午12点喝了点喝了1瓶啤酒(与瓶啤酒(与“参考数据参考数据”中短时间内喝下中短时间内喝下2瓶啤酒相比,喝酒量减少一半),此时:瓶啤酒相比,喝酒量减少一半),此时: 根据假设(根据假设(3),),k1和和k2保持不变,根据式(保持不变,根据式(7.5.5),大李的血液),大李的血液中酒精含量的经验数学模型为:中酒精含量的经验数学模型为: 把把t=6代入式(代入式(7.5.6),可以得到大李在下午),可以得到大李在下午6点被检查时血液点被检查时血液中酒精含量为:中酒精含量为: 因此,此时大李符合因此,此时大李符合“驾车标准驾车标准”(不属于(不属于“饮酒驾车饮酒驾车”) 数学实验数学实验7.5.7.2 问题问题(2)的应用的应用 在问题(在问题(2)中,大李在晚饭时又喝了)中,大李在晚饭时又喝了1瓶啤酒,瓶啤酒,根据模型假设根据模型假设中的中的“忽略喝酒时间忽略喝酒时间”,假设这瓶啤酒是在短时间内喝的。

      假设这瓶啤酒是在短时间内喝的由于问题中没有给出具体的晚饭喝酒时间,假设在晚上由于问题中没有给出具体的晚饭喝酒时间,假设在晚上s点吃饭时点吃饭时大李又喝了大李又喝了1瓶啤酒,瓶啤酒,注意注意s>6因为大李不可能在下午因为大李不可能在下午6点被检查的同时喝酒点被检查的同时喝酒 数学实验数学实验根据假设(根据假设(3),),k1和和k2保持不变,则有:保持不变,则有:根据前面的结果有:根据前面的结果有:模型求解 数学实验数学实验用用MATLAB编程求解如下:编程求解如下:[x2,y2]=dsolve('Dx2=-k1*x2','Dy2=k1*x2-k2*y2','x2(0)=N*g(0)*(1+exp(-k1*s))','y2(0)=(k1*N*g(0)/(k1-k2))*(exp(-k2*s)-exp(-k1*s))')[y,how]=simple([x2,y2])运行结果:运行结果:y = [N*g(0)*(1+exp(-k1*s))*exp(-k1*t), k1*N*g(0)*(exp(-k2*t)+exp(-k2*t-k2*s)-exp(-k1*t)-exp(-k1*t-k1*s))/(k1-k2)]即:即: 数学实验数学实验可变为: 其中大李又喝了大李又喝了1瓶啤酒时,酒精含量与时间(时间瓶啤酒时,酒精含量与时间(时间t从第二次喝酒开从第二次喝酒开始算,即始算,即t=14-s)的关系为:)的关系为: 数学实验数学实验根据假根据假设设((4),大李在晚),大李在晚8点吃晚点吃晚饭饭,把,把s=8,t=6代入式代入式(7.5.9),得,得大李在凌晨大李在凌晨2点被点被检查时检查时血液中酒精含量血液中酒精含量为为:此此时时属于属于“饮饮酒酒驾车驾车”。

      当然,人们也许更关心大李晚上“何时”再喝1瓶啤酒后,在凌晨2点检查时体内体内血液中的酒精含量等于20mg/100ml(即饮酒驾车的临界时间)此问题的MATLAB程序如下:x=fzero('57.2163*((1+exp(-0.1855*(14-x))).*exp(-0.1855*x)-(1+exp(-2.0079*(14-x))).*exp(-2.0079*x))-20',7)T=14-xx = 6.9584T = 7.0416运行结果为:因此,大李在晚上7.0416时之后再喝1瓶啤酒,在凌晨2点检查时体内血液中的酒精含量就会大于20mg/100ml(这样大李在晚上8点再喝1瓶啤酒,在凌晨2点被检查时就会被定为“饮酒驾车”) 数学实验数学实验综合以上解释了:(1)大李在中午12点喝了1瓶啤酒,下午6点检查时血液中的酒精含量为18.7993<20(mg/10ml),符合“驾车标准”2)紧接着大李在晚饭时(晚8点)时又喝了1瓶啤酒,在凌晨2点检查时血液中的酒精含量23.0618>20(mg/100ml),被定为饮酒驾车结论: 数学实验数学实验 本节在短时间内喝酒情况下,建立了体液(含血液)中的酒精本节在短时间内喝酒情况下,建立了体液(含血液)中的酒精含量的数学模型含量的数学模型.该模型基于微分方程,并对给出的数据利用非线该模型基于微分方程,并对给出的数据利用非线性最小二乘数据拟合法,确定了酒精从肠胃进入血液的速率系数和性最小二乘数据拟合法,确定了酒精从肠胃进入血液的速率系数和酒精从血液渗透出体外的速率系数,根据模型得到的结果基本符合酒精从血液渗透出体外的速率系数,根据模型得到的结果基本符合实际。

      模型很好的描述了酒精在体内的变化规律,在酒精摄入时能实际模型很好的描述了酒精在体内的变化规律,在酒精摄入时能够较为准确地预测出不同时间的血液酒精浓度对驾驶人员安排喝够较为准确地预测出不同时间的血液酒精浓度对驾驶人员安排喝酒与开车的关系具有指导性作用,并能够有效地防止酒后驾车的发酒与开车的关系具有指导性作用,并能够有效地防止酒后驾车的发生 1、模型把复杂的生理循环问题转化为酒精从肠胃(吸收、模型把复杂的生理循环问题转化为酒精从肠胃(吸收室)到血液与体液(中心室)的简单变化;室)到血液与体液(中心室)的简单变化;2、模型简明、模型简明易懂,具有较好的通用性易懂,具有较好的通用性模型的模型的优点:优点:本模型存在近似误差,是通过拟合产生的;另外模型未考虑不同的人对酒精的消耗速率可能本模型存在近似误差,是通过拟合产生的;另外模型未考虑不同的人对酒精的消耗速率可能存在的差异存在的差异模型的模型的缺点:缺点: 数学实验数学实验模型作一些修改后可以用于药物动力学问题,对药物在体内的浓模型作一些修改后可以用于药物动力学问题,对药物在体内的浓度变化进行研究具有一定的参考价值度变化进行研究具有一定的参考价值。

      模型的推广:模型的推广:下节预告下节预告 数学实验数学实验谢谢大家!谢谢大家! 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.