高等数学课后习题答案第八章3.docx
4页本文格式为Word版,下载可任意编辑高等数学课后习题答案第八章3 第八章习题解答(3) 节8.5片面习题解答 1、以下方程确定了y?f(x),求 (1)、nisdy, dxy?ex?xy2?0 ?F?F?ex?y2;?cosy?2xy ?x?y解:设F(x,y)?siny?ex?xy2?0, (2)、lnx2?y2?natcray x解:设F(x,y)?lnx2?y2?arctany, x?Fx?2??xx?y21yx?y(?2)?2; 2y2xx?y1?()xy11?Fy?x?()??2; 222yxx?y?yx?y1?()2xFdyx?y ??x?dxFyx?y(3)、x?y 解:设F(x,y)?x?y, yxyx?F1?F1?yxy?1?yxlny?xy(y?xlny) ?xylnx?xyx?1?xy(ylnx?x); ?xx?yyFy(xlny?y)dy ??x?x(ylnx?x)dxFy(4)、xy?e?1 解:设F(x,y)?xy?e?1, yy?F?F?y ?x?ey; ?x?yFydy ??x??x?eydxFy 1 2、以下方程确定了z?f(x,y),求 ?z?z ?x?y(1)、ez?xyz?0 解:设F(x,y,z)?ez?xyz, Fx??yz Fy??zx Fz?ez?xy; FyF?z?zyzzx ?z??x?z???x?yFze?xyFze?xy(2)、z3?3xyz?a3 解:设F(x,y,z)?z3?3xyz?a3, Fx??3yz Fy??3zx Fz?3z2?3xy; FyFx?z?zyzzx ?2?2?????x?yFzz?xyFze?xy(3)、x2y?2yz?ez?1 解:设F(x,y,z)?xy?2yz?e?1, 2zFx?2xy Fy?x2?2z Fz??2y?ez; Fyx2?2zFx?z?z2xy ??????zz?x?yFz2y?eFz2y?e(4)、sinz?xyz 解:设F(x,y,z)?sinz?xyz, Fx??2yz Fy??xz Fz?cosz?xy; FyF?z2yz?zxz? ??x????x?yFzcosz?xyFzcosz?xy3、设2sin(x?2y?3z)?x?2y?3z确定了z?f(x,y),验证: ?z?z??1 ?x?y证明:设F(x,y,z)?2sin(x?2y?3z)?(x?2y?3z), 2 Fx?2cos(x?2y?3z)?1 Fy?4cosx(?2y?3z)?2 Fz??6cos(x?2y?3z)?3; Fy1Fx2?z?z? ? ?????x?yFz3Fz3所以 ?z?z21????1 ?x?y334、设x?x(y,z),y?y(z,x),z?z(x,y)都是由方程F(x,y,z)?0确定的函数,证明 ?x?y?z????1 ?y?z?x证明: FyFF?x?y?z???(?)(?z)(?x)?(?1)3??1 ?y?z?xFxFyFz5、函数?(u,v)具有连续的偏导数,验证方程?(cx?az,cy?bz)?0所确定的函数 z?z(x,y)得志 a?z?z?b?c ?x?y证明:设u?cx?az,v?cy?bz, 那么有 ?u?u?v?v?u?v?c,??a,?0,??b ?0,?c,?x?z?x?z?y?y?x?c?1 ?y?c?2 ?z??a?1?b?2 ?y?xca?1cb?2?z?z b a??a???b??x?za?1?b?2?y?za?1?b?2 于是 aca?1cb?2c(a?1?b?2)?z?z?b????c ?x?ya?1?b?2a?1?b?2a?1?b?2?z?z, ?x?y6、设f具有连续偏导数,方程z?f(xz,z?y)确定了z?f(x,y),求 解:设F(x,y,z)?z?f(xz,z?y),又设u?xz,v?z?y, 那么有 ?u?u?v?v?u?v?z,?x,?0,?1 ?0,??1,?x?z?x?z?y?y3 Fx??zf1 Fy?f2 Fz?1?xf1?f2 Fzf1f2?z?z ??x????x?yFz1?xf1?f21?xf1?f2 7、设f具有连续偏导数,方程f(x,x?y,x?y?z)?0确定了z?f(x,y),求 ?z?z, ?x?y解:设F(x,y,z)?f(x,x?y,x?y?z), Fx?f1?f2?f3 Fy?f2?f3 Fz?f3 Ff?f2?f3f?f2?z?z ??x??1??1?x?yFzf3f3 8、求由方程组所确定的函数的导数或偏导数 ?z?x2?y2?y?z,, (1)、?2求22?x?x?x?2y?3z?20?y??z?2x?2y??x?x解:对等式两边同时求关于x的偏导数得 ?就是 ?y?z?2x?4y?6z?0?x?x?2x?2y?y??z??x?2y?x?2x?z?x2y2xyx解得 ?????z?y1?2y?x2y(3z?1)3z?1?3z?2y??x?x??x3z2y12x3z?x?yx(6z?1) ???1?2y?x2y(3z?1)3z2y1?2?x?y2?z2dxdy(2)、?2求dz,dz, ??x?y?z?2dy?dx2x?2y?z?dzdz解:对等式两边同时求关于z的偏导数得 ? dxdy????1?dzdz 4 z2y2xz1?1dx?11z?2ydyz?2x解得 ?????dz2x2y2(x?y)dz2x2y2(x?y)1111?u3?xv?y?0?u?v,, (3)、?3求?x?xv?yu?x?0??v?2?u3u?x?v?0??x?x解:对等式两边同时求关于x的偏导数得 ?就是 ?v?u?3v2?y?1?0?x?x??v?2?u3u?x??v??x?x 解得 ??u2?v?y?3v?1?x??x?13v2?u3v3?x?v??? ?22?x3u2?x9uv?xyx3u2y3v2y(4)、?3u2y3u2?yv ?229uv?xyx3v2?v1?x?y?u?v?u?v,, 求 isv?ynisu?y?y?xn解:对等式两边同时求关于y的偏导数得 ?u?v???1?1????y?y???y?y ?即? ?v?u?ycosu?u?xcosv?v??sinu?xcosv?sinu?ycosu??y?y?y?y???解得: ??u?v11?u?sinu?xcoscosv?sinu ??11?yxcosv?ycosuycosu?xcosv11ycosu?sinu?vsinu?ycosu ??11?yxcosv?ycosuycosu?xcosv 5 — 4 —。





