好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

等腰三角形判定教学设计.doc

6页
  • 卖家[上传人]:夏**
  • 文档编号:547748199
  • 上传时间:2023-12-17
  • 文档格式:DOC
  • 文档大小:37KB
  • / 6 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 等腰三角形判定教学设计涡阳实验中学 王娜知识结构: 重点与难点分析:  本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点. 本节内容的难点是性质与判定的区别,在定理运用时注意前提条件是在同一个三角形中等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.在定理使用时的前提条件在同一个三角形中是容易忽略的,也是难点之一.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.教法建议:  本节课教学方法主要是“以学生为主体的讨论探索法”在数学教学中要避免过多告诉学生现成结论提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律具体说明如下:  (1)参与探索发现,领略知识形成过程  学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。

      这样很自然就得到了等腰三角形的判定定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会  (2)采用“类比”的学习方法,获取知识  由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来如果学生提到的不完整,教师可以做适当的点拨引导  (3)总结,形成知识结构  为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?一.教学目标:  1.使学生掌握等腰三角形的判定定理及其推论;  2.掌握等腰三角形判定定理的运用;  3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;  4.通过自主学习的发展体验获取数学知识的感受;  5.通过知识的纵横迁移感受数学的辩证特征.二.教学重点:等腰三角形的判定定理三.教学难点:性质与判定的区别 四.教学用具:直尺,电脑五.教学方法:以学生为主体的讨论探索法六.教学过程:  1、新课背景知识复习  (1)请同学们说出互逆命题和互逆定理的概念  估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

        (2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?  启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:  1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.  (简称“等角对等边”).  由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.   已知:如图,△ABC中,∠B=∠C.   求证:AB=AC.  教师可引导学生分析:  联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.  注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.  (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.  (3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系. 小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.3,典型例题,练习,(见课件) 上午8时,一条船从海岛A出发,以每小时20海里的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得∠NAC=420,∠NBC=840,求从海岛B到灯塔C的距离。

      4.应用举例 解:学生上台解答小结:  (1)等腰三角形判定定理及应用.  (2)等腰三角形的证法. 七.作业  教材习题第3题  板书设计。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.