第二章第5课时.doc
11页§2.5 二次函数1.二次函数的定义与解析式(1)二次函数的定义形如:f(x)=ax2+bx+c (a≠0)的函数叫做二次函数.(2)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c (a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③零点式:f(x)=a(x-x1)(x-x2) (a≠0).2.二次函数的图象和性质图象函数性质a>0定义域x∈R(个别题目有限制的,由解析式确定)值域a>0a<0y∈[,+∞)y∈(-∞,]奇偶性b=0时为偶函数,b≠0时既非奇函数也非偶函数单调性a>0a<0a<0x∈(-∞,-]时递减,x∈[-,+∞)时递增x∈(-∞,-]时递增,x∈[-,+∞)时递减图象特点①对称轴:x=-;②顶点:(-,)3.二次函数f(x)=ax2+bx+c (a≠0),当Δ=b2-4ac>0时,图象与x轴有两个交点M1(x1,0)、M2(x2,0),|M1M2|=|x1-x2|=.[难点正本 疑点清源]1.求二次函数解析式的方法:待定系数法.根据所给条件的特征,可选择一般式、顶点式或零点式中的一种来求.①已知三个点的坐标时,宜用一般式.②已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③已知二次函数与x轴有两个交点,且横坐标已知时,选用零点式求f(x)更方便.2.二次函数对应的一元二次方程的区间根的分布讨论二次函数相应的二次方程的区间根的分布情况一般需从三方面考虑:①判别式;②区间端点的函数值的符号;③对称轴与区间的相对位置.在讨论过程中,注意应用数形结合的思想.1.若二次函数f(x)=ax2+bx+2满足f(x1)=f(x2),则f(x1+x2)=________.2.已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围为________.3.若函数y=x2+(a+2)x+3,x∈[a,b]的图象关于直线x=1对称,则b=________.4.已知函数f(x)=x2+2(a-1)x+2在区间(-∞,3]上是减函数,则实数a的取值范围为____________.5.若方程x2-2mx+4=0的两根满足一根大于1,一根小于1,则m的取值范围是__________题型一 求二次函数的解析式例1 已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定此二次函数.探究提高 二次函数的解析式有三种形式:(1)一般式:f(x)=ax2+bx+c (a≠0);(2)顶点式:f(x)=a(x-h)2+k (a≠0);(3)两根式:f(x)=a(x-x1)(x-x2)(a≠0).已知函数的类型(模型),求其解析式,用待定系数法,根据题设恰当选用二次函数解析式的形式,可使解法简捷. 设f(x)是定义在R上的偶函数,当0≤x≤2时,y=x,当x>2时,y=f(x)的图象是顶点为P(3,4),且过点A(2,2)的抛物线的一部分.(1)求函数f(x)在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f(x)的草图;(3)写出函数f(x)的值域.题型二 二次函数的图象与性质例2 已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=1时,求f(|x|)的单调区间.探究提高 (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解. 已知函数f(x)=-4x2+4ax-4a-a2在区间[0,1]内有一个最大值-5,求a的值.题型三 二次函数的综合应用例3 若二次函数f(x)=ax2+bx+c (a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.探究提高 二次函数、二次方程与二次不等式统称“三个二次”,它们常有机结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.因此,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点. 已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.(1)求f(x)与g(x)的解析式;(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函数,求实数λ的取值范围. 2.分类讨论在二次函数中的应用试题:(16分)设a为实数,函数f(x)=2x2+(x-a)|x-a|.(1)若f(0)≥1,求a的取值范围;(2)求f(x)的最小值;(3)设函数h(x)=f(x),x∈(a,+∞),直接写出(不需给出演算步骤)不等式h(x)≥1的解集.审题视角 (1)求a的取值范围,是寻求关于a的不等式,解不等式即可.(2)求f(x)的最小值,由于f(x)可化为分段函数,分段函数的最值分段求,然后综合在一起.(3)对a讨论时,要找到恰当的分类标准.规范解答解 (1)因为f(0)=-a|-a|≥1,所以-a>0,即a<0,由a2≥1知a≤-1,因此,a的取值范围为(-∞,-1].[3分](2)记f(x)的最小值为g(a),则有f (x)=2x2+(x-a)|x-a|=[5分](ⅰ)当a≥0时,f(-a)=-2a2,由①②知f(x)≥-2a2,此时g(a)=-2a2.[7分](ⅱ)当a<0时,f=a2,若x>a,则由①知f(x)≥a2.若x≤a,由②知f(x)≥2a2>a2.此时g(a)=a2,综上,得g(a)=.[10分](3)(ⅰ)当a∈∪时,解集为(a,+∞);(ⅱ)当a∈时,解集为;(ⅲ)当a∈时,解集为∪.[16分]批阅笔记 分类讨论的思想是高考重点考查的数学思想方法之一.本题充分体现了分类讨论的思想方法.在解答本题时有两点容易造成失分:一是求实数a的值时,讨论的过程中没注意a自身的取值范围,易出错;二是求函数最值时,分类讨论的结果不能写在一起,不能得出最后的结论.除此外,解决函数问题时,以下几点容易造成失分:1.含绝对值问题,去绝对值符号,易出现计算错误;2.分段函数求最值时要分段求,最后写在一起时,没有比较大小或不会比较出大小关系;3.解一元二次不等式时,不能与一元二次函数、一元二次方程联系在一起,思路受阻.方法与技巧1.数形结合是讨论二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常结合图形寻找思路.2.含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,又例如涉及二次不等式需讨论根的大小等.3.关于二次函数y=f(x)对称轴的判断方法(1)对于二次函数y=f(x)对定义域内所有x,都有f(x1)=f(x2),那么函数y=f(x)图象的对称轴方程为x=.(2)对于二次函数y=f(x)对定义域内所有x,都有f(a+x)=f(a-x)成立,那么函数y=f(x)图象的对称轴方程为x=a(a为常数).(3)对于二次函数y=f(x)对定义域内所有x,都有f(x+2a)=f(x),那么函数y=f(x)图象的对称轴方程为x=a(a为常数).注意:(2)(3)中,f(a+x)=f(a-x)与f(x+2a)=f(x)是等价的.(4)利用配方法求二次函数y=ax2+bx+c (a≠0)对称轴方程为x=-;(5)利用方程根法求对称轴方程.若二次函数y=f(x)对应方程为f(x)=0两根为x1、x2,那么函数y=f(x)图象的对称轴方程为x=.失误与防范1.求二次函数的单调区间时要经过配方法,要熟练准确利用配方法.2.对于函数y=ax2+bx+c要认为它是二次函数,就必须认定a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.3.对于二次函数y=ax2+bx+c (a≠0)给定了定义域为一个区间[k1,k2]时,利用配方法求函数的最值是极其危险的,一般要讨论函数图象的对称轴在区间外、内的情况,有时要讨论下列四种情况:①-

卡西欧5800p使用说明书资料.ppt
锂金属电池界面稳定化-全面剖析.docx
SG3525斩控式单相交流调压电路设计要点.doc
话剧《枕头人》剧本.docx
重视家风建设全面从严治党治家应成为领导干部必修课PPT模板.pptx
黄渤海区拖网渔具综合调查分析.docx
2024年一级造价工程师考试《建设工程技术与计量(交通运输工程)-公路篇》真题及答案.docx
【课件】Unit+3+Reading+and+Thinking公开课课件人教版(2019)必修第一册.pptx
嵌入式软件开发流程566841551.doc
生命密码PPT课件.ppt
爱与责任-师德之魂.ppt
制冷空调装置自动控制技术讲义.ppt


