
甘肃省张掖市高台县一中2024届高一上数学期末复习检测试题含解析.doc
14页甘肃省张掖市高台县一中2024届高一上数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上用2B铅笔将试卷类型(B)填涂在答题卡相应位置上将条形码粘贴在答题卡右上角"条形码粘贴处"2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案答案不能答在试题卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液不按以上要求作答无效4.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知a=log23+log2,b=log29-log2,c=log32,则a,b,c的大小关系是()A.a=b
11.已知函数若关于的方程有5个不同的实数根,则的取值范围为___________.12.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是__________13.已知不等式ax2+bx+2>0的解集为{x|-1 在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用对数的运算性质求出a、b、c的范围,即可得到正确答案.【详解】因为a=log23+log2=log2=log23>1,b=log29-log2=log2=a,c=log32 11、【解析】根据函数的解析式作出函数的大致图像,再将整理变形,然后将方程的根的问题转化为函数图象的交点问题解决.【详解】由题意得,即或,的图象如图所示,关于的方程有5个不同的实数根,则或,解得,故答案为:12、【解析】利用函数的图象变换规律,先放缩变换,再平移变换,从而可得答案【详解】将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数的图象;再将的图象向左平移个单位,得到的图象对应的解析式是的图象,故答案为:13、 【解析】不等式的解集为{x|-1<x<2},可得-1,2是一元二次方程的两个实数根,且a<0,利用根与系数的关系可得a,b,即可得出【详解】解:∵不等式的解集为{x|-1<x<2},∴-1,2是一元二次方程的两个实数根,且a<0,解得解得a=-1,b=1.则不等式化为,解得. 不等式的解集为.故答案为.【点睛】本题考查了一元二次不等式的解法、一元二次方程的根与系数的关系,考查了计算能力,属于中档题14、【解析】当时,,故恒过点睛:函数图象过定点问题,主要有指数函数过定点,对数函数过定点,幂函数过点,注意整体思维,整体赋值求解15、5【解析】由三角函数定义得16、【解析】由可得图像所过的定点.【详解】当时,,故的图像过定点.填.【点睛】所谓含参数的函数的图像过定点,是指若是与参数无关的常数,则函数的图像必过.我们也可以根据图像的平移把复杂函数的图像所过的定点归结为常见函数的图像所过的定点(两个定点之间有平移关系).三、解答题:本大题共5小题,共70分。 解答时应写出文字说明、证明过程或演算步骤17、(1)(2)【解析】(1)利用集合的交集运算即可求解;(2)由集合的基本运算得出集合的包含关系,进而求出实数m的取值范围.【小问1详解】解:时,;又;【小问2详解】解:由得所以解得:所以实数m的取值范围为:18、(1)见解析;(2)详见解析;(3)当时,;当时,【解析】(1)由表中数据可以得到的值与函数周期,从而求出,进而求出,即可得到函数的解析式,利用函数解析式可将表中数据补充完整;(2)结合三角函数性质与表格中的数据可以作出一个周期的图象;(3)结合正弦函数单调性,可以求出函数的最值【详解】(1)根据表中已知数据,解得,,,数据补全如下表:函数表达式为.(2)根据表格中的数据作出一个周期的图象见下图:(3)令,,则,则,,可转化为,,因为正弦函数在区间上单调递减,在区间(上单调递增,所以,在区间上单调递减,在区间(上单调递增,故的最小值为,最大值为,由于时,;时,,故当时,;当时,.【点睛】本题考查了三角函数的图象与性质,属于中档题19、(1) (2)单调递增区间是【解析】(1)根据公式可求函数的最小正周期;(2)利用整体法可求函数的增区间.【小问1详解】∵,∴最小正周期【小问2详解】令,解得,∴的单调递增区间是20、(1)或;(2)或;(3)详见解析【解析】(1)点在直线上,设,由对称性可知,可得,从而可得点坐标.(2)分析可知直线的斜率一定存在,设其方程为:.由已知分析可得圆心到直线的距离为,由点到线的距离公式可求得的值.(3)由题意知,即.所以过三点的圆必以为直径.设,从而可得圆的方程,根据的任意性可求得此圆所过定点试题解析:解:(1)直线的方程为,点在直线上,设,由题可知,所以,解之得:故所求点的坐标为或(2)易知直线的斜率一定存在,设其方程为:,由题知圆心到直线的距离为,所以,解得,或,故所求直线的方程为:或(3)设,则的中点,因为是圆的切线,所以经过三点的圆是以为圆心,以为半径的圆,故其方程为:化简得:,此式是关于的恒等式,故解得或所以经过三点的圆必过定点或考点:1直线与圆的位置关系问题;2过定点问题21、(1)+1(2)【解析】求出,的坐标,然后求解,以及平行四边形的面积,通过两角和与差的三角函数,以及正弦函数的值域求解即可;利用三角函数的定义,求出,利用二倍角公式以及两角和与差的三角函数求解表达式的值解析:(1)由已知得,的坐标分别为,,因为四边形是平行四边形,所以,又因为平行四边形的面积为,所以又因为,所以当时,的最大值为(2)由题意知,,因为,所以,因为,所以由,,得,,所以,,所以。












