好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

函数解析式求法和值域求法总结及练习题.doc

9页
  • 卖家[上传人]:腾****
  • 文档编号:40291266
  • 上传时间:2018-05-25
  • 文档格式:DOC
  • 文档大小:489.59KB
  • / 9 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第 1 页 共 9 页2[ ( )]( )()f f xaf xba axbba xabb函函 数数 解解 析析 式式 的的 七七 种种 求求 法法一、一、待定系数法:在已知函数解析式的构造时,可用待定系数法待定系数法:在已知函数解析式的构造时,可用待定系数法.例例 1 设是一次函数,且,求.)(xf34)]([xxff)(xf解解:设,则baxxf)()0(a, . 342baba  3212baba或 .32)(12)(xxfxxf 或 二、二、配凑法:已知复合函数配凑法:已知复合函数的表达式,求的表达式,求的解析式,的解析式,的表达式容的表达式容[ ( )]f g x( )f x[ ( )]f g x易配成易配成的运算形式时,常用配凑法的运算形式时,常用配凑法.但要注意所求函数但要注意所求函数的定义域不是原复的定义域不是原复( )g x( )f x合函数的定义域,而是合函数的定义域,而是的值域.的值域.( )g x例例 2 已知 ,求 的解析式.221)1(xxxxf)0( x( )f x解:解:, , .2)1()1(2xxxxfQ21xx2)(2xxf)2( x三、换元法:已知复合函数三、换元法:已知复合函数的表达式时,还可以用换元法求的表达式时,还可以用换元法求的解析式的解析式.与配与配[ ( )]f g x( )f x凑法一样,要注意所换元的定义域的变化.凑法一样,要注意所换元的定义域的变化.例例 3 已知,求.xxxf2) 1()1( xf解解:令,则, .1xt1t2) 1(  tx, Qxxxf2) 1(, 1) 1(2) 1()(22ttttf, .1)(2xxf) 1( xxxxxf21) 1() 1(22)0( x四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.例例 4 已知:函数的图象关于点对称,求的解析式.)(2xgyxxy与)3 , 2()(xg解解:设为上任一点,且为关于点的对称点.),(yxM)(xgy ),(yxM),(yxM)3 , 2(则 ,解得: , 3222 yyxx  yyxx 64点在上 , .Q),(yxM)(xgy xxy2第 2 页 共 9 页把代入得:.   yyxx 64)4()4(62xxy整理得, .672xxy67)(2xxxg五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造 方程组,通过解方程组求得函数解析式.方程组,通过解方程组求得函数解析式.例例 5 设求.,)1(2)()(xxfxfxf满足)(xf解解 ① Qxxfxf)1(2)(显然将换成,得: ② , 0xxx1 xxfxf1)(2)1(解① ②联立的方程组,得:.xxxf32 3)(六、赋值法:当题中所给变量较多,且含有六、赋值法:当题中所给变量较多,且含有““任意任意””等条件时,往往可以对具有等条件时,往往可以对具有““任意性任意性”” 的变量进行赋值,使问题具体化、简单化,从而求得解析式.的变量进行赋值,使问题具体化、简单化,从而求得解析式.例例 7 已知:,对于任意实数 x、y,等式恒成1)0(f) 12()()(yxyxfyxf立,求.)(xf解解对于任意实数 x、y,等式恒成立,Q) 12()()(yxyxfyxf不妨令,则有.0x 1) 1(1) 1()0()(2yyyyyyfyf再令 得函数解析式为:.xy 1)(2xxxf七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过 迭加、迭乘或者迭代等运算求得函数解析式.迭加、迭乘或者迭代等运算求得函数解析式.例例 8 设是定义在上的函数,满足,对任意的自然数 都有)(xfN1) 1 (fba,,求.abbafbfaf)()()()(xf解解 ,QNbaabbafbfaf,)()()(,不妨令,得:,1,bxaxxffxf) 1() 1 ()(又 ①1)() 1(, 1) 1 (xxfxff故令①式中的 x=1,2,…,n-1 得: (2)(1)2(3)(2)3( )(1)fffff nf nnL L,,,将上述各式相加得:,nfnfL32) 1 ()(第 3 页 共 9 页, .2) 1(321)(nnnnfLNxxxxf,21 21)(2函函 数数 值值 域域 求求 法法 小小 结结1.重难点归纳..重难点归纳.(1)求函数的值域. 此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图像法、 换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域. (2)函数的综合性题目. 此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在 今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强. (3)运用函数的值域解决实际问题. 此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考 生具有较强的分析能力和数学建模能力. 2.值域的概念和常见函数的值域..值域的概念和常见函数的值域.函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域.常见函数的值域:一次函数的值域为 R.0ykxb k二次函数,当时的值域为,20yaxbxc a0a 24,4acb a当时的值域为.0a 24,4acb a反比例函数的值域为.0kykx0yR y指数函数的值域为.01xyaaa且0y y 对数函数的值域为 R.log01ayx aa且正,余弦函数的值域为,正,余切函数的值域为 R.1,13.求函数值域(最值)的常用方法..求函数值域(最值)的常用方法. 一、观察法一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数)1、求的值域.242xy解:由绝对值函数知识及二次函数值域的求法易得:., 2,, 024)(2yxxg所以第 4 页 共 9 页2、求函数的值域.1 1 1yx 分析:首先由0,得+11,然后在求其倒数即得答案.1x1x解:0+11,0<1,函数的值域为Q1x1x1 1 1x (0,1]. 二、配方法配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值 域)1、求函数的值域.)4, 0(422xxxy解:设,配方得:.)0)((4)(2xfxxxf)4, 0(4)2()(2xxxf利用二次函数的相关知识得,从而得出:.4, 0)(xf2, 2y说明:在求解值域说明:在求解值域(最值最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:域的限制,本题为:.0)(xf2、若,试求的最大值。

      42yx0, 0yxxy解:本题可看成一象限动点在直线上滑动时函数的最大值.),(yxp42yx易得:,y=1 时,取最大值 2.2(0,4)(0,2),= (42 )2(1)2xyxy yyy ,而xy三、反表示法三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类 型) 对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别 为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域 的方法求原函数的值域1、求函数的值域.12 xxy解:因本题中分子、分母均只含有自变量的一次型,易反解出 x,从而便于求出反函 数反解得即.12 xxyyyx2xxy2故函数的值域为: (反函数的定义域即是原函数的值域)), 2()2 ,(Uy2、求函数的值域.224 1xyx解答:,因为,所以,算出值域为.24 1yxy20x 401y y(,4](1,)y  U第 5 页 共 9 页四、判别式法四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为的形式,再利用判别式加以判断)0)()()(2yCxyBxyA1、求函数的值域.3274222xxxxy解:由于本题的分子、分母均为关于 x 的二次形式,因此可以考虑使用判别式法,将 原函数变形为:整理得:7423222xxyxyyx073)2(2)2(2yxyxy当时,上式可以看成关于的二次方程,该方程的范围应该满足2yxx,即此时方程有实根即△,032)(2xxxfRx0△.292(2)]4(2)(37)0[,2]2yyyy 注意:判别式法解出值域后一定要将端点值(本题是)代回方程检29, 2yy验.将分别代入检验得不符合方程,所以.29, 2yy2y)2 ,29[y2、求函数的值域.21 22xyxx解答:先将此函数化成隐函数的形式得:,(1)012) 12(2yxyyx这是一个关于的一元二次方程,原函数有定义,等价于此方程有解,即方程(1)的判x别式,解得:.0) 12(4) 12(2yyy11 22y五、换元法五、换元法(通过简单的换元把一个函数变为简单函数,其题型特征是无理函数、三角函 数(用三角代换)等)1、求函数的值域.xxy41332解:由于题中含有不便于计算,但如果令:注意从而得:x413xt4130t变形得即:.)0(3213 41322 tttytx)0(8) 1(22tty]4 ,(y注意:在使用换元法换元时一定要注意新变量的范围新变量的范围,否则将会发生错误. 六、数形结合法六、数形结合法(对于一些能够准确画出函数图像的函数来说,可以先画出其函数图像, 然后利用函数图像求其值域)1、求函数的值域。

      13yxx 分析:此题首先是如何去掉绝对值,将其做成一个分段函数.第 6 页 共 9 页24,(,1],2,(1,3),24,[3,),xxyxxx   在对应的区间内,画出此函数的图像,如图 1 所示,易得出函数的值域为.), 2[ 七、不等式法七、不等式法(能利用几个重要不等式及推论来求得最值. (如:) ,利用此法求函数的值域,要合理地添项和拆项,添项和abbaabba2,222拆项的原则是要使最终的乘积结果中不含自变量,同时,利用此法时应注意取成立““ 的条件. )1、求函数的值域.1(0)yxxx解答:,当且仅当时取等号.1122yxxxx1,1xxx注意:在使用此法时一定要注意的前提条件是 a>0,b>0,且能取到2abab a=b. 八、部分分式法(分离常数法)八、部分分式法(分。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.