
对高考应用题的回顾预测与建议.doc
7页对高考应用题的回顾、预测与建议大沥高级中学数学备课组 陈 建 中 对高考应用题的历史回顾从1977年恢复全国统一高考到1993年间,数学应用题也常出现在高考试题中,只是没有形成制度,时考(如’79、’80、’88、’93等)时不考(如’78、’87、’89等).即使考应用题,力度也远远不够.进入九十年代以来,随着“由应试教育向素质教育转轨”’95至’98四年的高考应用题加以对比分析,形成拙见如下:首先请看’95至’98四年高考应用(解答)题的基本情况表:年度题号情 境数学模型主要解题障碍难度9524市场经济问题函数、不等式解不等式(组)0.389623人口土地问题方程、不等式建模、近似计算0.319722汽车运费问题函数、最小值求最小值0.539822污水处理问题函数、最小值建模、求最小值0.45 为便于叙述,我们用JMNL表示建模能力,用JMNLD表示考查建模能力的力度,用CSNL表示常规的数学能力和思想方法,用CSNLD表示考查常规的数学能力和思想方法的力度.1.1 定位合理从上表不难看出,应用题定位在中档题上,并从95年的(24)题移至97年,98年的(22)题,根据目前考生的数学应用意识和能力,这一定位是切合实际的、合理的.特别是95年、96年的应用题难度过大,国家考试中心本着“适当控制难度”“适当控制难度”,是否就一定以过于降低JMNL的要求为代价呢?实事求是地说,作为一道普通的数学题目,这无疑是一道好题,但是,作为应用题考查考生JMNL,笔者以为这是强其所难了.第二,JMNLD与CSNLD比例失调,甚至CSNLD远远大于JMNLD,“建模”成为淡淡的一笔而被一带而过,因而应用题形同虚设.2对于CSNL要求过高95年、96年试题难度分别为0.38和0.31,偏难.97年试题难度虽然达到了0.53,但这是得益于对JMNL的要求过低.应用题难度大,主要原因是对于CSNL的要求过高.如95年试题的解方程、解不等式,96年试题的近似计算,97年试题的求最小值,这些都不低于甚至远远超出了对JMNL的要求,有喧宾夺主之嫌.特别是97年试题的求最小值,需要分类讨论,并且当ab>c时,涉及了函数y=s(av+bv)在(0,ab]上的单调性,或当0












