
从“买布问题”说起——一元一次方程的讨论2课件.ppt
12页从“买布问题”起 ——一元一次方程的讨论(2),温故知新,去括号法则:,括号外的因数是正数,去括a号后各项的符号与原括号内相应各项的符号相同; 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.,1.解下列方程: (1)12(x+1)= -(3x-1); (2) 2(y-3)-3(2+y)=0; (3) 2-3(m-1)= m+1; (4)3(2x-3)-3[3(2x-3)+3]=5.,例 一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的速度.,分析:题中的等量关系为,这艘船往返的路程相等,即: 顺流速度×顺流时间=逆流速度×逆流时间.,解:设船在静水中的平均速度为x千米/时,则顺流速度为(x+3)千米/时,逆流速度为(x-3)千米/时.,根据往返路程相等,列得,2(x+3)=2.5(x-3).,去括号,得,2x+6=2.5x-7.5.,移项及合并,得,0.5x=13.5.,x=27.,答:船在静水中的平均速度为27千米/时.,提出问题 探究新知,问题一 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?,分析:为了使每天生产的产品刚好配套,应使生产的螺母数量恰好是螺钉数量的,,2 倍,解:设分配 x 名工人生产螺钉,其余 名工人生产螺母.,,(22 – x),根据螺母数量与螺钉数量的关系,列得,2×1 200 x = 2 000 ( 22 - x).,去括号,得,2 400x = 44 000 – 2000x.,移项及合并,得,4 400x = 44 000.,x = 10.,生产螺母的人数为,22 – x = 12.,答:应分配10名工人生产螺钉,12名工人生产螺母.,练一练,某水利工地派 48 人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?,1.题中的等量关系是什么?,挖出的土方量恰好等于运走的土方量,2.该如何列方程解此题呢?,解:设安排 x 人去挖土,则有(48 – x )人运土,根据题意,得 5 x = 3 ( 48 – x ). 去括号,得 5x = 144 –3x. 移项及合并,得 8x = 144. x = 18. 运土的人数为 48 – x = 48 –18 = 30. 答:应安排18人去挖土,30人去运土,正好能使挖出的土及时运走.,问题二 某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?,1.你能找出题中的等量关系吗?,生产出的甲、乙两种零件恰好能配套.,2.该如何设未知数呢?,设安排生产甲种零件 x 天,则生产乙种零件为 (30 – x )天.,3.你能列出此方程吗?,4.你会解此方程吗?,5.你该如何取数呢?,,反思小结,1.通过这节课的学习,你有什么收获?,2.在解决配套、分配等问题方面你获得了哪些经验?这些问题中的相等关系有什么特点?,。






![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)





