
2019秋九年级数学上册-2.5-一元二次方程的应用-第1课时-增长(降低)率问题测试题湘教版.doc
4页2019秋九年级数学上册 2.5 一元二次方程的应用 第1课时 增长(降低)率问题测试题湘教版01 基础题知识点 增长(降低)率问题1.(随州中考)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次.设观赏人数年均增长率为x,则下列方程中正确的是(C) A.20(1+2x)=28.8 B.28.8(1+x)2=20 C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.82.(衡阳中考)某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得(B) A.168(1+x)2=128 B.168(1-x)2=128 C.168(1-2x)=128 D.168(1-x2)=1283.某县政府2014年投资0.5亿元用于保障性房建设,计划到2016年投资保障性房建设的资金为0.98亿元.如果从2014年到2016年投资此项目资金的年增长率相同,那么年增长率是(B) A.30% B.40% C.50% D.60%4.(天水中考)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为20%.5.(广东中考)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.解:设3月份到5月份营业额的月平均增长率为x,根据题意,得400×(1+10%)(1+x)2=633.6.解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:3月份到5月份营业额的月平均增长率为20%.02 中档题6.股票每天的涨跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫作涨停;当跌了原价的10%后,便不能再跌,叫作跌停.已知一只股票某天涨停,之后两天时间又跌回原价,若这两天此股票股价的平均下跌的百分率为x,则x满足的方程是(B) A.1-2x= B.(1-x)2= C.1-2x= D.(1-x)2=7.为防治雾霾,保护环境,某市掀起“爱绿护绿”热潮,经过两年时间,绿地面积增加了21%,则这两年的绿地面积的平均增长率是(A) A.10% B.11.5% C.12% D.21%8.(黔西南中考)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是(C) A.50(1+x2)=196 B.50+50(1+x2)=196 C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1969.(永州中考)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出100件,为使两次降价销售的总利润不少于3 120元.第一次降价后至少要售出该种商品多少件?解:(1)设该种商品每次降价的百分率为x,根据题意,得400(1-x)2=324,解得x=0.1=10%或x=1.9(不合题意,舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,根据题意,得[400(1-10%)-300]m+(324-300)(100-m)≥3 120,解得m≥20.答:第一次降价后至少要售出该种商品20件.10.(沈阳中考)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品的利润每月的增长率相同,求这个增长率.解:设这个增长率为x,依题意,得20(1+x)2-20(1+x)=4.8,解得x1=0.2=20%,x2=-1.2(不合题意,舍去).答:这个增长率是20%.11.为了绿化学校附近的荒山,某校初三年级学生连续三年的春季都上山植树,已知这些学生在初一时植树400棵,设植树数的年平均增长率为x.(1)用含x的代数式表示这些学生在初三时的植树数;(2)若树木成活率为90%,三年来共成活了1 800棵,求x的值.(精确到1%)解:(1)这些学生在初三时的植树数为400(1+x)2.(2)由题意,得90%×[400+400(1+x)+400(1+x)2]=1 800,解得x1≈56%,x2≈-356%(不合题意,舍去).答:x的值约为56%.03 综合题12.某日王老师佩戴运动手环进行快走锻炼,两次锻炼后数据如表.与第一次锻炼相比,王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的3倍.设王老师第二次锻炼时平均步长减少的百分率为x(0<x<0.5).项目第一次锻炼第二次锻炼步数(步)10 00010 000(1+3x)平均步长(米/步)0.60.6(1-x)距离(米)6 0007 020注:步数×平均步长=距离.(1)根据题意完成表格填空;(2)求x;(3)王老师发现好友中步数排名第一为24 000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24 000步,求王老师这500米的平均步长.解:(2)由题意,得10 000(1+3x)·0.6(1-x)=7 020,解得x1=>0.5(舍去),x2=0.1.答:x的值为0.1.(3)两次锻炼结束的步数为10 000+10 000×(1+0.1×3)=23 000(步),500÷(24 000-23 000)=0.5(米).答:王老师这500米的平均步长为0.5米.。
