
江苏省盐城市初中数学九年级期末下册通关黑金考题(附答案).docx
22页姓名 :_________________学号 :_________________班级 :_________________学校 :_________________ 密封线 密封线 初中数学九年级期末下册试卷题号一二三四五六阅卷人总分得分注意事项:1.全卷采用机器阅卷,请考生注意书写规范;考试时间为120分钟;2.在作答前,考生请将自己的学校、姓名、班级、准考证号涂写在试卷和答题卡规定位置; 3.部分必须使用2B铅笔填涂;非选择题部分必须使用黑色签字笔书写,字体工整,笔迹清楚; 4.请按照题号在答题卡上与题目对应的答题区域内规范作答,超出答题区域书写的答案无效:在草稿纸、试卷上答题无效;A卷(第I卷)〔满分:100分 时间:120分钟〕一、选择题1、 在中,,,则( )A.60°B.90°C.120°D.135°2、 如图,在平面直角坐标系中,已知等腰直角,,轴,若,点A、C在反比例函数的图像上,则( ) A.3B.4C.8D.103、 如图,表示一个窗户的高,和表示射入室内的光线,窗户的下端到地面的距离,已知某一时刻的地面的影长,在地面的影长,则窗户的高是( )A.B.C.D.4、 若两个相似三角形的对应高的比为,则它们对应周长的比为( )A.B.C.D.5、 如图,已知中,,,若,于点E,则( )A.B.C.D.6、 如图,这是一个几何体三视图,则该几何体的侧面积是( )A.B.C.D.7、 将一圆柱体从水中匀速提起,从如图所示开始计时,直至其下表面刚好离开水面,停止计时.用表示圆柱体运动时间,表示水面的高度,则与之间函数关系的图象大致是( )A.B.C.D.8、 如图1,在Rt△ABC中,∠A=90°,BC=10cm,点P,点Q同时从点B出发,点P以2cm/s的速度沿B→A→C运动,终点为C,点Q出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图2(曲线OM和MN均为抛物线的一部分),给出以下结论:①AC=6cm;②曲线MN的解析式为y=﹣t2+t(4≤t≤7);③线段PQ的长度的最大值为cm;④若△PQC与△ABC相似,则t=秒,其中正确的说法是( )A.①②④B.②③④C.①③④D.①②③二、填空题9、 如果点A(﹣2,y1),B(﹣1,y2),C(2,y3)都在反比例函数y= (k>0)的图象上,那么y1 , y2 , y3的大小关系是________(请用“<”表示出来)10、 任意放置以下几何体:正方体、圆柱、圆锥、球体,则三视图都完全相同的几何体是______________.11、 在某一时刻,测得一根高为的竹竿的影长为,同时测得一根旗杆的影长为,那么这根旗杆的高度为______m.12、 若,相似比为,,则为______.13、 如图,在平面直角坐标系中,点,点C是线段的中点,点D是线段上一点,将沿直线翻折得到,点E落在反比例函数的图像上,若,则k的值为________________ . 14、 一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是_____.15、 如图,点A在反比例函数的图象上,点B在反比例函数的图象上,轴,点C是轴上的一点,若的面积为,则的值为________. 三、综合题16、 计算:.17、 在平面直角坐标系中,为等腰三角形,,点,点,.点为轴正半轴上任意一点(与点不重合),点,连接,将线段绕点逆时针旋转得到线段,连接并延长交轴于点.〔1〕如图1,当,时,则点的坐标为______________,点的坐标为______________;〔2〕当时.①如图2,请判断和的位置关系,并说明理由;②过点作轴,垂足为,请直接写出的长(用含有的式子表示).18、 在平面直角坐标系中,的半径为给出如下定义:为上一点,过点作直线,交轴于点,称点为点的“关联点”.〔1〕如图,,,若点在上,且的长为,则_________,点的“关联点”点的坐标是__________;〔2〕求点的“关联点”点的横坐标的最小值;〔3〕若线段的长为,直接写出这时点的“关联点”点的横坐标的最大值和最小值.19、 如图,在中,,AD是的角平分线,圆心在AB上,且过点D的⊙交AB于点E.〔1〕求证:直线BC是⊙的切线;〔2〕若,,求⊙的半径.20、 在平面直角坐标系中,对于点(不与点重合)和线段,给出如下定义:连接,平移线段,使点与线段的中点重合,得到线段,则称点为线段的“中移点”.已知的半径为 〔1〕如图,点,点,点为与轴正半轴的交点,,求的值;点为上一点,若在直线上存段的“中移点”,求的取值范围;〔2〕点是上一点,点段上,且.若是外一点,点为线段的“中移点”,连接.当点在上运动时,直接写出长的最大值与最小值的差(用含的式子表示).21、 如图,△ABC中,AB=AC=10cm.BC=16cm,动点P从点C出发沿线段CB以2cm/s的速度向点B运动,同时动点Q从点B出发沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也停止运动,设运动时间为t(单位:s),以点Q为圆心,BQ长为半径的⊙Q与射线BA、线段BC分别交于点D,E,连接DP.〔1〕当t为何值时,线段DP与⊙Q相切;〔2〕若⊙Q与线段DP只有一个公共点,求t的取值范围;〔3〕当△APC是等腰三角形时,直接写出t的值. 参考答案与解析1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、。












