好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

(最新)直线与圆的位置关系教学设计[最终定稿].docx

23页
  • 卖家[上传人]:柏**
  • 文档编号:287006026
  • 上传时间:2022-05-02
  • 文档格式:DOCX
  • 文档大小:28.82KB
  • / 23 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 直线与圆的位置关系教学设计[最终定稿]第一篇:直线与圆的位置关系教学设计 直线与圆的位置关系教学设计 大虹桥乡阳城一中 杨跟上 一:教材: 人教版九年义务教育九年级数学上册 二:学情分析 初三学生已经具备一定的独立思考和探索能力,并能在探索过程中形成自己的观点,能在倾听别人意见的过程中逐渐完善自己的想法,因此本节课设计了探究活动,给学生提供探索与交流的空间,体现知识的形成过程 三教学目标(知识,技能,情感态度、价值观) 1、 知识与技能 (1)了解直线与圆的位置关系 (2)了解直线与圆的不同位置关系时的有关概念 (3)了解判断直线与圆相切的方法 (4)能运用直线与圆的位置关系解决实际问题 2.过程与方法 (1)通过运用直线与圆的位置关系解决实际问题,体验数学与现实生活的密切联系 (2) 能综合运用以前的数学知识解决与本节有关的实际问题 3. 情感态度与价值观 (1)通过和点与圆的位置关系的类比,学习直线与圆的位置关系,培养学生类比的思维方法 (2)培养学生的相互合作精神 四:教学重点与难点: 1.重点:直线与圆的位置关系 2难点:理解相切的位置关系 五:教学方法: 启发探究 六、教学环境及资源准备 1、 教学环境:学校多媒体教室。

      2.教学资源 (1).教师多媒体课件, (2)学生准备硬币或其他类似圆的用具 七:教学策略选择与设计 1、 自主学习策略:通过提出问题让学生思考,帮助学生学会探索直线与圆的位置关系关系 2、 合作探究策略:通过学生动手操作与相互交流,激发学生学习兴趣,让学生在轻松愉快的教学气氛下之下掌握直线与圆的位置关系 3、 理论联系实际策略;通过学生综合运用数学知识解决直线与圆的位置关系的实际问题,培养学生利用知识 解决实际问题的能力 教学流程: 一. 复习回顾,导入新课 由点和圆的位置关系设计了两个问题,让学生独立思考,然后回答问题,为下面做准备 1.请回答点和圆有那几种位置关系? 2.如果设圆的半径是r,某点到圆心的距离为d,那么在不同的位置关系下,d和r有什么样的数量关系? 二:合作交流,探求新知 第一步,学生对直线与圆的公共点个数变化情况的探索 通过学生动手操作和探索,然后相互交流,并画出图形,得出直线与圆的公共点个数的变化情况 第二步,师生共同归纳出直线与圆相交、相切等有关概念 第三步,直线与圆的位置关系的教学,我设计了三个问题: 1. 设圆O的半径为r, 圆心O到直线的距离为d,那么直线与圆在不同的位置关系下,d与r有什么样的数量关系?请你分别画出图形,认真观察和分析图形,类比点和圆的位置关系,看看d和r什么数量关系。

      2. 反过来,由d与r的数量关系,你能得到直线与圆的位置关系吗? 3.类比点和圆的位置关系,你能总结出直线和圆的位置关系吗? 通过引导学生由图形联想到数量关系,又由数量关系联系到图形,分两步引导学生思考,使学生更好的理解图形与数量之间的互推关系,培养学生类比的思维方法,并且为以后学习充要条件做准备 三:应用新知 我设计了两个问题,使学生学会通过计算圆心到直线的距离,来判断直线与圆的位置关系 四:巩固提高: 我设计了一个问题,让学生通过运用直线与圆的位置关系解决实际问题,体验数学与现实生活的密切联系并且通过学生的相互交流,培养他们的合作精神 五:小结升华 通过让学生小结,培养学生善于总结和善与反思的习惯,为以后的学习打下良好的基础 六:布置作业 在本节的教学中,我设计了两个练习、一个作业加以巩固,使学生能更好的掌握本节内容 第二篇:直线与圆的位置关系教学设计 4.2.1 直线与圆的位置关系 一、教学目标 1.知识与技能:(1)理解直线与圆的位置关系; (2)利用点到直线的距离公式求圆心到直线的距离; (3)会判断直线与圆的位置关系。

      2.过程与方法:(1)通过复习初中数学知识得出几何法判断直线与圆的位置关系; (2)类比直线交点的求解方法来求直线与圆的交点坐标,从而总结得 出代数法来判断直线与圆的位置关系 3、情感态度与价值观:使学生通过通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想 二、教学重难点 1.教学重点:根据给定直线及圆的方程,判断直线与圆的位 置关系 2.教学难点:判断直线与圆的位置关系及其判断方法的选取 三、课时安排:1课时 四、授课类型:新授课 五、 教学过程: (一)复习引入 以生活中的场景(日出)展现出直线与圆的位置关系,并提出新的问题 师生互动:教师通过多媒体展示日出的几个瞬间,导想出直线与圆的位置关系,引出本节的学习 设计意图:由生活中的实例出发,有利于激发学生的学习兴趣 (二)探究新知 1、 判断直线与圆的位置关系的判断方法 师:在初中偶们已经学习过直线与圆的位置关系的相关知识,我们一起来回忆下直线与圆有哪几种位置关系? 生:相交,相切,相离 师:我们是如何判断他们的位置关系呢? 生:根据圆心到直线的距离与半径的相对大小。

      师:恩,非常好!现在我们已经学习过直线,圆的方程了,那大家能否根据之前学过的方法来判断下直线与圆的位置关呢? 例1.如图所示,已知直线L :3x+y-6=0和圆心为C的圆 x+y-2y-4=0,判断直线L与圆的位置关系,若相交,求出交点坐标 分析:依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系(几何法); 解:圆 x+y-2y-4=0可化为x+(y-1)=5,其圆心C(0,1) 半径r=5 点C到直线L的距离: d=2222223´0+1-69+1= 50 所以直线L与圆C有两个不同的交点,故直线L与圆C相交 师:现在大家一起来总结下这两种方法的一般解题步骤 板书:方法一 几何法 把直线方程化为一般式,利用圆的方程求出圆心和半径 ↓ 利用点到直线的距离公式求圆心到直线的距离 ↓ 作判断: 当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d0时,直线与圆相交 2、巩固提高 判断直线4x-3y=50与圆x+y=100的位置关系.如果相交,求出交点坐标 (由两位同学用两种不同的方法在黑板演算,最后师生一起校对运算过程次,并由此得出下列结论) 小结:在判断直线与圆的位置关系时,若需要求交点坐标,一般情况下用代数法运算较好,若只是判断直线与圆的位置关系,几何法可能更便于运算。

      222 2(三)拓展应用 师:现在我们一起运用已学到的知识来解决下本节的引言部分的问题 生:认真阅读课本第126页的引言部分问题 分析:在第三章我们有学习遇到这类文字型题目的一般解决步骤: (1)建立适当的直角坐标系; (2)用坐标表示出相关的量,然后进行代数运算; (3)将运算结果翻译成文字语言 解:以台风中心为原点,东西方向为x 轴,建立如图所示的直角坐标系,其中,取10km为单位长度,这样,受台风影响的圆形区域所对应的圆O方程为 x+y=9, 轮船航线所在直线L的方程为4x+7y-28=0 点O到直线L的距离 d= 220+0-2865= 28≈3.5 65 圆O的半径长r=3,因为3.5>3, 所以,这艘轮船不必改变航线,不会受到台风的影响. (四)归纳小结 本节课我们一起学习了直线与圆的位置关系的两种判断方法: ①代数法:通过直线方程与圆的方程所组成的方程组成的方程组,根据解的个数来研究,若有两组不同的实数解,即⊿>0,则相交;若有两组相同的实数解,即⊿=0,则相切;若无实数解,即⊿<0,则相离. ②几何法:由圆心到直线的距离d与半径r的大小来判断:当dr时,直线与圆相离. (五)布置作业:课本132页 第1题 六、板书设计 七、教学反思 1、新的课标把直线和圆的位置关系作为独立的章节, 说明新课标对这节内容要求有所提高。

      2、判断直线与圆的位置关系为了防止计算量过大,一般采取几何的方法,但用方程思想解决几何问题是解析几何的精髓,是以后处理圆锥曲线问题的常用方法,掌握好方程的方法有利于培养数形结合的思想 3、直线与圆位置关系的相关问题如:弦长的求法、如何求圆的切线方程以后还要补充 4、用代数法判断直线与圆的位置关系, 不必求出方程组的解,利用根的判别式即可 第三篇:直线与圆的位置关系教学设计 直线与圆的位置关系教学设计 教学目标: 理解直线和圆相交、相切、相离的概念;初步掌握直线和圆的位置关系的性质和判定通过直线和圆的位置关系的探索,向学生渗透类比、分类、数形结合的思想培养学生观察、分析、概括、知识迁移的能力及灵活应用知识解决问题的能力 教学重点: (1)直线和圆的位置关系的过程,得出直线和圆的三种位置关系 (2)关系表述三种位置关系 教学难点: 通过数量关系判断直线和圆的位置关系 教学过程与实施策略: 一、复习过渡(引入新知) 点与圆有哪几种位置关系?设⊙O的半径为r,点P到圆心的距离为d,如何用d与r之间的数量关系表示点P与⊙O的位置关系? 师生互动:在教师引导下回忆点和圆有三种位置关系:点在圆内、点在圆上、点在圆外。

      点P在⊙O内 dd=r 点P在⊙O外d>r 通过点和圆的位置关系的回忆,引出新知识,提出新问题 教学思路:学生在下面先画出点和圆的三种位置关系图—老师利用电子白板进行操作,演示一下点和圆的三种位置关系图—而后将电子白板中的点换成直线,引出新知 二、创设情景,激发兴趣 活动1:(1)我们同学都看过日出吧,如果我们把地平线看成一条直 线,而把太阳抽象成一个运动着的圆,通过太阳缓缓升起的这样一个过程,你能想象直线和圆有几种位置关系么? (2)让学生想象行驶在不同路面上(在平坦的水泥路、在崎岖的山路、在泥泞的乡间路)的自行车轮胎和地面(把轮胎看成一个圆,地面看成直线),可能会出现几中情况? 教学思路:利用电子白板展示活动1和2的内容与相应的动画图片 师生互动:学生观察太阳从地平线升起的过程和自行车行驶在不同路面上的过程 议一议: 学生分小组进行讨论,可从直线与圆交点的个数考虑,1个交点,2个交点,没有交点…… 让学生进一步感受到数学来源于生活,与生活密切相关,并能使学生更好的直观感受直线和圆的三种位置关系 三、实践活动,探究新知: 活动2:请同学(1)在纸上画一条直线,把硬币的边缘看作圆,在纸上移动硬币。

      2)在纸上画一个圆,把直尺看作直线,移动直尺你能发现直线和圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个? 师生互动:教师演示直线和圆动态的变化过程,帮助学生用语言描述直线和圆的三种位置关系,明确概念 教学思路:操作电子白板,。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.