
企业进入、产业波动与就业增长(二).doc
7页企业进入、产业波动与就业增长(二) (5)其他控制变量就业增长除了受到企业进入和产业波动的影响以外,显然还会受到产业环境和宏观环境的影响我们选择的产业特征变量包括技术进步、企业规模、产业增长率,而宏观特征变量包括实际人均GDP增长率、地区工资水平技术进步用《中国高技术产业统计年鉴》中的R&D经费内部支出来表示,一般来说,产业R&D投入越大,创新产出就越高,产业技术升级换代的更替时间就会越短,因此,可以在一定程度上反映技术进步企业规模的衡量指标较为常用的是销售额、企业从业人员数和企业总资产三个指标①,本文采用产业的平均资产值来表示企业规模变量(Cscale),即产业总产值/企业数量产业增长率(Ridu)可以反映产业的发展状况和发展前景,产业增长率=(当期产业总产值-上一期产业总产值)/上一期产业总产值人均GDP可以较好地体现宏观环境的变化情况,我们选择用地区人均GDP增长率来表示地区工资水平会影响到失业或就业,失业可以分为自愿性失业和非自愿性失业,工人会基于工资水平选择自愿性失业,如果工资水平呈上升趋势,工人就会出于预期选择就业地区工资水平(Wage)采用中经网统计数据库的“在岗职工平均工资”来表示。
表1变量描述性统计 注:在下文估计中,R&D和Wage采用的是取对数后的值,并且实际计算时百分数采用实际比值 三、实证分析1.基本模型本文在分析地区就业增长的影响因素时引入了企业进入变量,而新企业的进入随着时间的推移可能产生跟随效应,因此,当期的企业进入会受到上期的企业进入以及滞后n期的企业进入影响,并且随着时间的推移而逐渐弱化但值得注意的是滞后变量的引入可能会造成多重共线性问题,并且选择过多的滞后项会减少模型的自由度,采用OLS模型可能会造成估计结果的偏误因此,我们通过Almon多项式法对分布滞后模型进行估计,一般形式可表示为:Yt=α+β0Xt+β1Xt-1+β2Xt-2+…+βsXt-s+μt其中βi为动态乘数,表示各滞后期X变动对Y平均值影响的程度通过表2可以发现企业进入的滞后变量存在严重的共线性问题,国外的大量文献也都证实了多重共线性的存在(Fritsch et al,2004,2007;Mueller et al,2007;Van et al,2007)图2、图3分别为当期的企业进入率与滞后1期和滞后5期企业进入率的散点图,随着滞后期的延长,相关性逐渐减弱因此,通过分布滞后模型进行估计就更为合适。
其一般形式可以变形为: 在确定最优滞后期后,利用阿尔蒙变换βi=×ik,其中i=0,1,2,…,S(m<S)代入模型定义新变量以减少解释变量个数,再使用OLS法对变换后的模型进行参数估计 表2 企业进入的相关性检验 图2 企业进入滞后1期的散点图 图3 企业进入滞后5期的散点图 2.模型建立为了分析企业进入和产业波动对地区就业增长的影响,同时考虑到高技术产业的典型特征,本文在Baptista等(2011)的模型基础上构建以下模型:△Grei,t=α0+β0Trei,t+β1Trei,t-1+…+βnTrei,t-n+γXi,t+μit (1)△Greit=α0+β0Turi,t+β1Turi,t-1+…+βnTuri,t-n+γXi-t+μit (2)其中i表示地区变量,t表示时间变量;就业增长率(△Gre)为被解释变量,是地区i在第t年和第t-2年的就业人数变化率,企业进入和产业波动是解释变量;Xi,t为控制变量(包括企业规模、产业增长率、技术进步、人均GDP和工资水平);μit为随机误差项模型中滞后期数的确定需要通过AIC准则、SC准则和拟合优度值综合考虑为了分析企业进入和产业波动对就业增长的长期影响,滞后期数取值应该较长,但考虑到高技术产业发展时间较短,我们仅仅只考虑了10年的数据,因此,最终将n值确定为5。
3.估计结果与解释表3、表4分别列出了多项式阶数为2、3、4时,企业进入、产业波动与就业增长的多项分布滞后模型估计结果,可以看出:企业进入与就业增长都呈现出s型的变化趋势,而产业波动与就业增长都呈现出先增后减的变化趋势通过估计系数的显著性以及Log-likelihood值可知多项式阶数为2时模型更适合,F统计量的显著性也说明了估计结果的可靠性 表3面板PDLS模型估计结果(自变量:企业进入) 注:(1)*、**、***分别表示10%、5%和1%的统计显著性水平;(2)小括号内为t值;(3)时间虚拟变量取值为2007、2008和2009年:(4)由于考虑了时间和地区效应,采用固定效应模型进行估计 表4面板PDLS模型估计结果(自变量:产业波动) 从表3的估计结果,我们可以得到以下结论:(1)企业进入对就业增长的直接效应在t=0期表现为显著的正向关系,但从t-1到t-4期企业进入对就业增长的影响开始变为负向,到t-5期又转变为正向影响,企业进入对就业增长的影响整体上呈现出波浪形变动趋势,这与Fritsch等(2004)和Mueller等(2007)的研究结论一致在企业进入的初期,由于企业数量的增加会导致劳动力需求增加,就业增长的直接效应可以认为是短期的需求效应引致的。
但随着企业的大量进入,产业的竞争加剧,新进入企业在新技术上的后动优势使其在产业竞争中占据有利地位,这无疑会导致大量的在位企业缺乏竞争力而面临倒闭的风险,进而退出率会相应上升,就业机会也会随之降低因此,企业进入的替代效应和拥挤效应降低了就业率的增长在t-5期时,企业进入对就业增长的影响呈现出较弱的正向关系,这可能是由于企业进入对就业增长的间接供给效应和正向的溢出效应引致的,新企业进入带来的效率提升和产品多样化促进了后期就业的增长可以发现,对于高技术产业而言,企业进入对就业增长的替代效应和拥挤效应较为明显,企业进入的直接效应强于间接供给效应,这与Fritsch等(2004)认为企业进入对就业增长的间接效应强于直接效应相悖当然,由于选择的产业差异和国家差异可能会使得结论有所差异2)技术进步与地区就业增长呈现出负向关系,技术进步每增加1个百分点,就业增长率就降低0.3个百分点,但没有通过显著性检验从理论层面来看,技术进步对就业增长的影响并不确定:一方面由于产业技术进步引起劳动生产率和产业效率的提高,对劳动力的需求压力减小,并且中国产业正处于转型时期,正在从劳动密集型产业向技术密集型产业过渡,这无疑会使得就业环境恶化;另一方面技术进步降低了产业技术壁垒,放宽了产业准入标准,这会促使大量中小企业进入,而中小企业是我国吸纳就业的主力军,无疑会增加对劳动力的需求。
高技术产业对高技术、高创新效率的要求,使得产业技术进步速度较其他产业更快,而大量传统企业难以紧跟技术进步的步伐,企业退出率会相应增长,因此,技术进步对就业增长总体上可能会有负向的影响3)工资水平与就业增长呈显著的正相关,工资水平每提高1个百分点,就业增长率就提高13.4个百分点学术界对工资与就业之间关系的争论从未停止过,大量的实证研究通过不同的数据和模型证明了工资与就业之间的关系并不确定随着工资水平的增加,工人的消费能力和有效需求就会提高,这会促进新企业进入高技术产业,进而创造出大量的就业机会4)产业增长率与就业增长呈正向关系,并且通过了1%的显著性检验从产业生命周期来看,高技术产业正处于兴起和成长阶段,新兴产业的高风险特征会抑制企业进入步伐;而产业的增长可以反映产业的市场前景,产业增长率越高,市场容量也就更大,企业进入的吸引力就越强,就业的机会空间就会扩大5)实际人均GDP增长率对就业增长有显著的正向影响,人均GDP增长率每提高1个百分点,就会使得就业率增加0.503个百分点经济增长与就业增长是宏观经济调控的主要目标,其相互关系也一直是学界探讨的重要领域,但都难以得到一致的结论高技术产业在国际市场上具有较强竞争力,是我国未来出口贸易的重点方向,受宏观经济环境的影响较明显。
宏观经济环境会对进出口贸易产生重要影响,并进而会对企业投资决策和进入决策产生影响经济环境的好坏会通过出口企业影响到就业环境:宏观环境越好,企业的进入率就会提高,就业机会也会相应的增加;宏观环境恶化则会增加企业的破产和退出率,进而抑制就业机会的增加近年来,我国经济保持了长期稳定的增长率,在很大程度上促进了就业率的提高,因而人均GDP增长率与就业增长呈现显著的正向关系6)企业规模对就业增长有显著的正向影响,并且通过了1%的显著性检验随着企业规模的扩大,企业部门、产品研发人员以及生产线都会相应的增加,企业对劳动力的需求也会随之增加,因此,企业规模增长有助于地区就业的增长高技术产业正处于发展初期阶段,政府是产业发展的主导力量之一,大型国有企业更是产业发展初期的先行者,为就业增长提供了广阔的空间从表4的估计结果我们可以得出以下结论:(1)产业波动对就业增长的作用呈现出先增后减的变化趋势:在t期至t-2期为显著的正向影响,但影响程度逐渐减弱;从t-3期开始到t-5期影响方向开始转变为负向,但t-5期的显著性明显降低企业进入可以创造大量的就业机会,而企业退出则会抑制就业的增长,产业波动对就业增长的影响方向则需要综合进入和退出的相互作用。
在高技术产业兴起阶段,得益于企业对先动优势的追逐,企业进入数量呈现出一个上升趋势,企业进入对就业增长的正向影响明显强于企业退出对就业的负向影响;但随着时间的推移,大量老企业逐渐退出市场,就业的空间缩小,产业逐渐向饱和状态发展,企业进入和企业退出对就业的影响程度随之减弱,到t-5期开始逐渐消失2)在产业波动对就业增长影响的模型中,除企业规模变量外,其他控制变量的影响方向与表3的估计结果一致企业规模与就业增长呈现出负向关系,但并没有通过显著性检验,这与Nystrom(2009)的结论相同这可以从我国高技术产业发展的现实状况来理解:现阶段尚缺乏具有全球性影响力的、具有较强产业主导力和较大就业带动力的大规模型企业,企业规模对就业增长的促进作用并不明显值得注意的是,在产业波动环境下,人均GDP和产业增长率对就业增长的正向促进作用并不显著这可能是由于产业波动的强度越大,企业进入的积极性就越弱,而产业退出的可能性增加,人均GDP和产业增长率对就业增长的影响也就相应降低四、进一步检验及稳健性测试考虑到异常值和极端值对模型估计结果的影响,同时为处理非正态分布问题,我们建立了面板分位数回归模型: 其中,θ为分位点(O<θ<1),θ取值的变化会使得待估参数值发生改变,分别为待估系数。
从表5和表6的估计结果来看,在不同的分位点上企业进入与就业增长呈现出S型变化趋势,而产业波动与就业增长呈先增后减的变化趋势,这与多项式分布滞后模型的估计结果一致但值得注意的是,在不同的分位点上企业进入对就业增长的负向效应影响的时滞并不相同,在θ=0.25和θ=0.5时负向作用从第三期开始,而θ=0.9时负向影响从第四期开始通过分位数回归模型,我们可以看到,在就业增长的不同水平下,企业进入对就业增长的分布会产生不同影响,但并没有改变波浪形的变化趋势 表5 面板分位数回归估计结果(自变量:企业进入) 表6 面板分位数回归估计结果(自变量:产业波动) (未完待续) 。












