高等代数(北大版)第5章习题参考答案.doc
41页YOUR LOGO 原 创 文 档 请 勿 盗 版第五章二次型1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果;1)4x1 x22x1 x32x2 x3 ;2222)x12 x1 x2 2 x2 4x2 x34x3;223)x13x22x1 x22x1 x36x2 x3 ;4) 8x1 x42x3 x42x2 x38x2 x4 ;x1 x2x1 x3x1 x4x2 x3x2 x4x3 x4 ;5)2226)x12x2x44x1 x24x1 x32x1 x42x2 x32x2 x42x3 x4;22227)x1x2x3x42x1x22x2 x32 x3 x4 ;解 1 )已知f x1 , x2 , x34 x1 x22 x1 x32x2 x3,先作非退化线性替换x1x2 x3y1y1 y3y2y2( 1)则22f x1 , x2 , x34 y14y24 y1 y322224y14 y1 y3y3y3 4y23222 y1y3y34 y2 ,再作非退化线性替换1212y1z1z3( 2)y2y3z2z3则原二次型地标准形为222f x1 , x2 , x3z14z2z3 ,最后将( 2)代入( 1),可得非退化线性替换为精品学习资料——勤奋,为踏入成功之门地阶梯第 1 页,共 41 页1212z31212x1z1z2z3x2z1z2z3( 3)x3于为相应地替换矩阵为1212012121120012010010110110001T10,且有100040001T AT;2222 )已知f x1 , x2 , x3x12x1 x22x24x2 x34 x3 ,由配方法可得2222f x1 , x2 , x3x12x1x2x2x24x2 x34x322x1x2x22x3,于为可令y1y2y3x1x2 x3x22 x3,则原二次型地标准形为22fx1 , x2 , x3y1y2,且非退化线性替换为x1x2x3y1y2y3y22 y32 y3,相应地替换矩阵为100110221T,精品学习资料——勤奋,为踏入成功之门地阶梯第 2 页,共 41 页且有112012001110122024100110221100010000T AT;22( 3)已知f x1 , x2 , x3x13x22 x1 x22 x1 x36x2 x3 ,由配方法可得22222fx1 , x2 , x3x12x1 x22x1 x32x2 x3x2x34x24x2 x3x322x1x2x32x2 x3,于为可令y1y2y3x12x2x3x2x3x3,则原二次型地标准形为22fx1 , x2 , x3y1y2 ,且非退化线性替换为1232x1y1y2y312y312x2y2y3,x3相应地替换矩阵为12120321211T00,且有12120321211112320121200111133130100010000T AT00;1( 4)已知f x1 , x2 , x3 , x48x1 x22x3 x42x2 x38x2 x4 ,精品学习资料——勤奋,为踏入成功之门地阶梯第 3 页,共 41 页先作非退化线性替换x1x2 x3 x4y1y2 y3 y4y4,则2fx1 , x2 , x3 , x48y1 y48y42 y3 y4 2y2 y38y2 y421 y1 y21 y812121 y8248y2 yyy4123123221212188y1y2y32 y2 y322121218148y1y2y3y42y1y2y32 y2 y3 ,再作非退化线性替换y1y2y3y4z1z2 z2 z4z3z3,则221 z5 z3 z5 z43 zfx , x , x , x8z2z1 2 3 412341232884222z22z3 ,再令5434w1z1x2x3w2w3z2z3,125838w4z1z2z3z4则原二次型地标准形为2222f x1 , x2 , x3 , x42w12w22w38w4 ,且非退化线性替换为精品学习资料——勤奋,为踏入成功之门地阶梯第 4 页,共 41 页1254w3w334x1w1w2w3w4x2x3w2w212,x4w1w4相应地替换矩阵为12001254110341101001T,且有2020000200008000T AT;( 5)已知f x1 , x2 , x3 , x4x1 x2x1 x3x1 x4x2 x3x2 x4x3 x4 ,先作非退化线性替换x1x2 x3 x42 y1y2y3y4y2,则2f x1 , x2 , x3 , x42 y1 y2y22 y1 y32 y2 y32 y1 y42y2 y4 y3 y421234222y1y2y3y4y3y4y4y1,再作非退化线性替换z1z2y1y1y2y3y4,12z3y3y4z4y4即精品学习资料——勤奋,为踏入成功之门地阶梯第 5 页,共 41 页y1z112y2z1 z2z3z4,12y3z3z4y4z4则原二次型地标准形为342222f x1 , x2 , x3 , x4且非退化线性替换为z1z2z3z4 ,12x1z1z2z3z412x2z1z2z3z4,12x3z3z4x4z4相应地替换矩阵为1212121111111T,000010且有10000100001000034T AT;222( 6)已知fx1 , x2 , x3 , x4x12 x2x44x1 x24x1 x32x1x42x2 x32x2 x42x3 x4 ,由配方法可得22f x1 , x2 , x3 , x4x1 2x1 2x22x3x42x22x3x42222x2 2x3x42x2x42x2 x32 x2 x42x3 x4精品学习资料——勤奋,为踏入成功之门地阶梯第 6 页,共 41 页23 x21 x21222,x2x2xx2 xxx123423434于为可令y1x12x22x3x432x412y2x2x3x4,y3y4x3x4则原二次型地标准形为12222fy12 y2y3 ,且非退化线性替换为x1y12y2y3y432y4x2y2y3y4,x3x4y3y4故替换矩阵为10002100132101111T,且有10000200001200000T AT;2222( 7)已知f x1 , x2 , x3 , x4x1x2x3x42x1 x22x2 x32x3 x4 ,由配方法可得222f x1 , x2 , x3 , x4x22x2x1x3x1x32 x1 x32x3 x4x42222x1x2x32 x1 x3x32x3 x4x4x322222x1x2x3x3x42x1 x3x3x1x12222x1x1x2x3x3x4x1x3,于为可令精品学习资料——勤奋,为踏入成功之门地阶梯第 7 页,共 41 页y1y2y3y4x1x1 x3x1x2。

卡西欧5800p使用说明书资料.ppt
锂金属电池界面稳定化-全面剖析.docx
SG3525斩控式单相交流调压电路设计要点.doc
话剧《枕头人》剧本.docx
重视家风建设全面从严治党治家应成为领导干部必修课PPT模板.pptx
黄渤海区拖网渔具综合调查分析.docx
2024年一级造价工程师考试《建设工程技术与计量(交通运输工程)-公路篇》真题及答案.docx
【课件】Unit+3+Reading+and+Thinking公开课课件人教版(2019)必修第一册.pptx
嵌入式软件开发流程566841551.doc
生命密码PPT课件.ppt
爱与责任-师德之魂.ppt
制冷空调装置自动控制技术讲义.ppt


